| 1 |
/* |
| 2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
* |
| 4 |
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
* non-exclusive, royalty free, license to use, modify and |
| 6 |
* redistribute this software in source and binary code form, provided |
| 7 |
* that the following conditions are met: |
| 8 |
* |
| 9 |
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
* publication of scientific results based in part on use of the |
| 11 |
* program. An acceptable form of acknowledgement is citation of |
| 12 |
* the article in which the program was described (Matthew |
| 13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
* |
| 18 |
* 2. Redistributions of source code must retain the above copyright |
| 19 |
* notice, this list of conditions and the following disclaimer. |
| 20 |
* |
| 21 |
* 3. Redistributions in binary form must reproduce the above copyright |
| 22 |
* notice, this list of conditions and the following disclaimer in the |
| 23 |
* documentation and/or other materials provided with the |
| 24 |
* distribution. |
| 25 |
* |
| 26 |
* This software is provided "AS IS," without a warranty of any |
| 27 |
* kind. All express or implied conditions, representations and |
| 28 |
* warranties, including any implied warranty of merchantability, |
| 29 |
* fitness for a particular purpose or non-infringement, are hereby |
| 30 |
* excluded. The University of Notre Dame and its licensors shall not |
| 31 |
* be liable for any damages suffered by licensee as a result of |
| 32 |
* using, modifying or distributing the software or its |
| 33 |
* derivatives. In no event will the University of Notre Dame or its |
| 34 |
* licensors be liable for any lost revenue, profit or data, or for |
| 35 |
* direct, indirect, special, consequential, incidental or punitive |
| 36 |
* damages, however caused and regardless of the theory of liability, |
| 37 |
* arising out of the use of or inability to use software, even if the |
| 38 |
* University of Notre Dame has been advised of the possibility of |
| 39 |
* such damages. |
| 40 |
*/ |
| 41 |
|
| 42 |
#include "integrators/NVT.hpp" |
| 43 |
#include "primitives/Molecule.hpp" |
| 44 |
#include "utils/simError.h" |
| 45 |
#include "utils/OOPSEConstant.hpp" |
| 46 |
|
| 47 |
namespace oopse { |
| 48 |
|
| 49 |
NVT::NVT(SimInfo* info) : VelocityVerletIntegrator(info), chiTolerance_ (1e-6) { |
| 50 |
|
| 51 |
Globals* simParams = info_->getSimParams(); |
| 52 |
|
| 53 |
if (simParams->getUseInitXSstate()) { |
| 54 |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 55 |
currSnapshot->setChi(0.0); |
| 56 |
currSnapshot->setIntegralOfChiDt(0.0); |
| 57 |
} |
| 58 |
|
| 59 |
if (!simParams->haveTargetTemp()) { |
| 60 |
sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp_!\n"); |
| 61 |
painCave.isFatal = 1; |
| 62 |
painCave.severity = OOPSE_ERROR; |
| 63 |
simError(); |
| 64 |
} else { |
| 65 |
targetTemp_ = simParams->getTargetTemp(); |
| 66 |
} |
| 67 |
|
| 68 |
// We must set tauThermostat_. |
| 69 |
|
| 70 |
if (!simParams->haveTauThermostat()) { |
| 71 |
sprintf(painCave.errMsg, "If you use the constant temperature\n" |
| 72 |
"\tintegrator, you must set tauThermostat_.\n"); |
| 73 |
|
| 74 |
painCave.severity = OOPSE_ERROR; |
| 75 |
painCave.isFatal = 1; |
| 76 |
simError(); |
| 77 |
} else { |
| 78 |
tauThermostat_ = simParams->getTauThermostat(); |
| 79 |
} |
| 80 |
|
| 81 |
update(); |
| 82 |
} |
| 83 |
|
| 84 |
void NVT::doUpdate() { |
| 85 |
oldVel_.resize(info_->getNIntegrableObjects()); |
| 86 |
oldJi_.resize(info_->getNIntegrableObjects()); |
| 87 |
} |
| 88 |
void NVT::moveA() { |
| 89 |
SimInfo::MoleculeIterator i; |
| 90 |
Molecule::IntegrableObjectIterator j; |
| 91 |
Molecule* mol; |
| 92 |
StuntDouble* integrableObject; |
| 93 |
Vector3d Tb; |
| 94 |
Vector3d ji; |
| 95 |
double mass; |
| 96 |
Vector3d vel; |
| 97 |
Vector3d pos; |
| 98 |
Vector3d frc; |
| 99 |
|
| 100 |
double chi = currentSnapshot_->getChi(); |
| 101 |
double integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
| 102 |
|
| 103 |
// We need the temperature at time = t for the chi update below: |
| 104 |
|
| 105 |
double instTemp = thermo.getTemperature(); |
| 106 |
|
| 107 |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
| 108 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
| 109 |
integrableObject = mol->nextIntegrableObject(j)) { |
| 110 |
|
| 111 |
vel = integrableObject->getVel(); |
| 112 |
pos = integrableObject->getPos(); |
| 113 |
frc = integrableObject->getFrc(); |
| 114 |
|
| 115 |
mass = integrableObject->getMass(); |
| 116 |
|
| 117 |
// velocity half step (use chi from previous step here): |
| 118 |
//vel[j] += dt2 * ((frc[j] / mass ) * OOPSEConstant::energyConvert - vel[j]*chi); |
| 119 |
vel += dt2 *OOPSEConstant::energyConvert/mass*frc - dt2*chi*vel; |
| 120 |
|
| 121 |
// position whole step |
| 122 |
//pos[j] += dt * vel[j]; |
| 123 |
pos += dt * vel; |
| 124 |
|
| 125 |
integrableObject->setVel(vel); |
| 126 |
integrableObject->setPos(pos); |
| 127 |
|
| 128 |
if (integrableObject->isDirectional()) { |
| 129 |
|
| 130 |
//convert the torque to body frame |
| 131 |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
| 132 |
|
| 133 |
// get the angular momentum, and propagate a half step |
| 134 |
|
| 135 |
ji = integrableObject->getJ(); |
| 136 |
|
| 137 |
//ji[j] += dt2 * (Tb[j] * OOPSEConstant::energyConvert - ji[j]*chi); |
| 138 |
ji += dt2*OOPSEConstant::energyConvert*Tb - dt2*chi *ji; |
| 139 |
rotAlgo->rotate(integrableObject, ji, dt); |
| 140 |
|
| 141 |
integrableObject->setJ(ji); |
| 142 |
} |
| 143 |
} |
| 144 |
|
| 145 |
} |
| 146 |
|
| 147 |
rattle->constraintA(); |
| 148 |
|
| 149 |
// Finally, evolve chi a half step (just like a velocity) using |
| 150 |
// temperature at time t, not time t+dt/2 |
| 151 |
|
| 152 |
|
| 153 |
chi += dt2 * (instTemp / targetTemp_ - 1.0) / (tauThermostat_ * tauThermostat_); |
| 154 |
integralOfChidt += chi * dt2; |
| 155 |
|
| 156 |
currentSnapshot_->setChi(chi); |
| 157 |
currentSnapshot_->setIntegralOfChiDt(integralOfChidt); |
| 158 |
} |
| 159 |
|
| 160 |
void NVT::moveB() { |
| 161 |
SimInfo::MoleculeIterator i; |
| 162 |
Molecule::IntegrableObjectIterator j; |
| 163 |
Molecule* mol; |
| 164 |
StuntDouble* integrableObject; |
| 165 |
|
| 166 |
Vector3d Tb; |
| 167 |
Vector3d ji; |
| 168 |
Vector3d vel; |
| 169 |
Vector3d frc; |
| 170 |
double mass; |
| 171 |
double instTemp; |
| 172 |
int index; |
| 173 |
// Set things up for the iteration: |
| 174 |
|
| 175 |
double chi = currentSnapshot_->getChi(); |
| 176 |
double oldChi = chi; |
| 177 |
double prevChi; |
| 178 |
double integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
| 179 |
|
| 180 |
index = 0; |
| 181 |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
| 182 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
| 183 |
integrableObject = mol->nextIntegrableObject(j)) { |
| 184 |
oldVel_[index] = integrableObject->getVel(); |
| 185 |
oldJi_[index] = integrableObject->getJ(); |
| 186 |
|
| 187 |
++index; |
| 188 |
} |
| 189 |
|
| 190 |
} |
| 191 |
|
| 192 |
// do the iteration: |
| 193 |
|
| 194 |
for(int k = 0; k < maxIterNum_; k++) { |
| 195 |
index = 0; |
| 196 |
instTemp = thermo.getTemperature(); |
| 197 |
|
| 198 |
// evolve chi another half step using the temperature at t + dt/2 |
| 199 |
|
| 200 |
prevChi = chi; |
| 201 |
chi = oldChi + dt2 * (instTemp / targetTemp_ - 1.0) / (tauThermostat_ * tauThermostat_); |
| 202 |
|
| 203 |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
| 204 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
| 205 |
integrableObject = mol->nextIntegrableObject(j)) { |
| 206 |
|
| 207 |
frc = integrableObject->getFrc(); |
| 208 |
vel = integrableObject->getVel(); |
| 209 |
|
| 210 |
mass = integrableObject->getMass(); |
| 211 |
|
| 212 |
// velocity half step |
| 213 |
//for(j = 0; j < 3; j++) |
| 214 |
// vel[j] = oldVel_[3*i+j] + dt2 * ((frc[j] / mass ) * OOPSEConstant::energyConvert - oldVel_[3*i + j]*chi); |
| 215 |
vel = oldVel_[index] + dt2/mass*OOPSEConstant::energyConvert * frc - dt2*chi*oldVel_[index]; |
| 216 |
|
| 217 |
integrableObject->setVel(vel); |
| 218 |
|
| 219 |
if (integrableObject->isDirectional()) { |
| 220 |
|
| 221 |
// get and convert the torque to body frame |
| 222 |
|
| 223 |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
| 224 |
|
| 225 |
//for(j = 0; j < 3; j++) |
| 226 |
// ji[j] = oldJi_[3*i + j] + dt2 * (Tb[j] * OOPSEConstant::energyConvert - oldJi_[3*i+j]*chi); |
| 227 |
ji = oldJi_[index] + dt2*OOPSEConstant::energyConvert*Tb - dt2*chi *oldJi_[index]; |
| 228 |
|
| 229 |
integrableObject->setJ(ji); |
| 230 |
} |
| 231 |
|
| 232 |
|
| 233 |
++index; |
| 234 |
} |
| 235 |
} |
| 236 |
|
| 237 |
|
| 238 |
rattle->constraintB(); |
| 239 |
|
| 240 |
if (fabs(prevChi - chi) <= chiTolerance_) |
| 241 |
break; |
| 242 |
|
| 243 |
} |
| 244 |
|
| 245 |
integralOfChidt += dt2 * chi; |
| 246 |
|
| 247 |
currentSnapshot_->setChi(chi); |
| 248 |
currentSnapshot_->setIntegralOfChiDt(integralOfChidt); |
| 249 |
} |
| 250 |
|
| 251 |
|
| 252 |
double NVT::calcConservedQuantity() { |
| 253 |
|
| 254 |
double chi = currentSnapshot_->getChi(); |
| 255 |
double integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
| 256 |
double conservedQuantity; |
| 257 |
double fkBT; |
| 258 |
double Energy; |
| 259 |
double thermostat_kinetic; |
| 260 |
double thermostat_potential; |
| 261 |
|
| 262 |
fkBT = info_->getNdf() *OOPSEConstant::kB *targetTemp_; |
| 263 |
|
| 264 |
Energy = thermo.getTotalE(); |
| 265 |
|
| 266 |
thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * chi * chi / (2.0 * OOPSEConstant::energyConvert); |
| 267 |
|
| 268 |
thermostat_potential = fkBT * integralOfChidt / OOPSEConstant::energyConvert; |
| 269 |
|
| 270 |
conservedQuantity = Energy + thermostat_kinetic + thermostat_potential; |
| 271 |
|
| 272 |
return conservedQuantity; |
| 273 |
} |
| 274 |
|
| 275 |
|
| 276 |
}//end namespace oopse |