| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | */ | 
| 42 |  | 
| 43 | #include "brains/SimInfo.hpp" | 
| 44 | #include "brains/Thermo.hpp" | 
| 45 | #include "integrators/IntegratorCreator.hpp" | 
| 46 | #include "integrators/NgammaT.hpp" | 
| 47 | #include "primitives/Molecule.hpp" | 
| 48 | #include "utils/PhysicalConstants.hpp" | 
| 49 | #include "utils/simError.h" | 
| 50 |  | 
| 51 | namespace OpenMD { | 
| 52 | NgammaT::NgammaT(SimInfo* info) : NPT(info) { | 
| 53 | Globals* simParams = info_->getSimParams(); | 
| 54 | if (!simParams->haveSurfaceTension()) { | 
| 55 | sprintf(painCave.errMsg, | 
| 56 | "If you use the NgammaT integrator, you must set a surface tension.\n"); | 
| 57 | painCave.severity = OPENMD_ERROR; | 
| 58 | painCave.isFatal = 1; | 
| 59 | simError(); | 
| 60 | } else { | 
| 61 | surfaceTension= simParams->getSurfaceTension()* PhysicalConstants::surfaceTensionConvert * PhysicalConstants::energyConvert; | 
| 62 | } | 
| 63 |  | 
| 64 | } | 
| 65 | void NgammaT::evolveEtaA() { | 
| 66 | Mat3x3d hmat = snap->getHmat(); | 
| 67 | RealType hz = hmat(2, 2); | 
| 68 | RealType Axy = hmat(0,0) * hmat(1, 1); | 
| 69 | RealType sx = -hz * (press(0, 0) - targetPressure/PhysicalConstants::pressureConvert); | 
| 70 | RealType sy = -hz * (press(1, 1) - targetPressure/PhysicalConstants::pressureConvert); | 
| 71 | eta(0,0) -= dt2* Axy * (sx - surfaceTension) / (NkBT*tb2); | 
| 72 | eta(1,1) -= dt2* Axy * (sy - surfaceTension) / (NkBT*tb2); | 
| 73 | eta(2,2) = 0.0; | 
| 74 | oldEta = eta; | 
| 75 | } | 
| 76 |  | 
| 77 | void NgammaT::evolveEtaB() { | 
| 78 | Mat3x3d hmat = snap->getHmat(); | 
| 79 | RealType hz = hmat(2, 2); | 
| 80 | RealType Axy = hmat(0,0) * hmat(1, 1); | 
| 81 | prevEta = eta; | 
| 82 | RealType sx = -hz * (press(0, 0) - targetPressure/PhysicalConstants::pressureConvert); | 
| 83 | RealType sy = -hz * (press(1, 1) - targetPressure/PhysicalConstants::pressureConvert); | 
| 84 | eta(0,0) = oldEta(0, 0) - dt2 * Axy * (sx -surfaceTension) / (NkBT*tb2); | 
| 85 | eta(1,1) = oldEta(1, 1) - dt2 * Axy * (sy -surfaceTension) / (NkBT*tb2); | 
| 86 | eta(2,2) = 0.0; | 
| 87 | } | 
| 88 |  | 
| 89 | void NgammaT::calcVelScale(){ | 
| 90 |  | 
| 91 | for (int i = 0; i < 3; i++ ) { | 
| 92 | for (int j = 0; j < 3; j++ ) { | 
| 93 | vScale(i, j) = eta(i, j); | 
| 94 |  | 
| 95 | if (i == j) { | 
| 96 | vScale(i, j) += thermostat.first; | 
| 97 | } | 
| 98 | } | 
| 99 | } | 
| 100 | } | 
| 101 |  | 
| 102 | void NgammaT::getVelScaleA(Vector3d& sc, const Vector3d& vel){ | 
| 103 | sc = vScale * vel; | 
| 104 | } | 
| 105 |  | 
| 106 | void NgammaT::getVelScaleB(Vector3d& sc, int index ) { | 
| 107 | sc = vScale * oldVel[index]; | 
| 108 | } | 
| 109 |  | 
| 110 | void NgammaT::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) { | 
| 111 |  | 
| 112 | /**@todo */ | 
| 113 | Vector3d rj = (oldPos[index] + pos)/(RealType)2.0 -COM; | 
| 114 | sc = eta * rj; | 
| 115 | } | 
| 116 |  | 
| 117 | void NgammaT::scaleSimBox(){ | 
| 118 | Mat3x3d scaleMat; | 
| 119 |  | 
| 120 | scaleMat(0, 0) = exp(dt*eta(0, 0)); | 
| 121 | scaleMat(1, 1) = exp(dt*eta(1, 1)); | 
| 122 | scaleMat(2, 2) = exp(dt*eta(2, 2)); | 
| 123 | Mat3x3d hmat = snap->getHmat(); | 
| 124 | hmat = hmat *scaleMat; | 
| 125 | snap->setHmat(hmat); | 
| 126 |  | 
| 127 | } | 
| 128 |  | 
| 129 | bool NgammaT::etaConverged() { | 
| 130 | int i; | 
| 131 | RealType diffEta, sumEta; | 
| 132 |  | 
| 133 | sumEta = 0; | 
| 134 | for(i = 0; i < 3; i++) { | 
| 135 | sumEta += pow(prevEta(i, i) - eta(i, i), 2); | 
| 136 | } | 
| 137 |  | 
| 138 | diffEta = sqrt( sumEta / 3.0 ); | 
| 139 |  | 
| 140 | return ( diffEta <= etaTolerance ); | 
| 141 | } | 
| 142 |  | 
| 143 | RealType NgammaT::calcConservedQuantity(){ | 
| 144 |  | 
| 145 | thermostat = snap->getThermostat(); | 
| 146 | loadEta(); | 
| 147 |  | 
| 148 | // We need NkBT a lot, so just set it here: This is the RAW number | 
| 149 | // of integrableObjects, so no subtraction or addition of constraints or | 
| 150 | // orientational degrees of freedom: | 
| 151 | NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; | 
| 152 |  | 
| 153 | // fkBT is used because the thermostat operates on more degrees of freedom | 
| 154 | // than the barostat (when there are particles with orientational degrees | 
| 155 | // of freedom). | 
| 156 | fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; | 
| 157 |  | 
| 158 |  | 
| 159 | RealType totalEnergy = thermo.getTotalEnergy(); | 
| 160 |  | 
| 161 | RealType thermostat_kinetic = fkBT * tt2 * thermostat.first * | 
| 162 | thermostat.first /(2.0 * PhysicalConstants::energyConvert); | 
| 163 |  | 
| 164 | RealType thermostat_potential = fkBT* thermostat.second / PhysicalConstants::energyConvert; | 
| 165 |  | 
| 166 | SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; | 
| 167 | RealType trEta = tmp.trace(); | 
| 168 |  | 
| 169 | RealType barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); | 
| 170 |  | 
| 171 | RealType barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; | 
| 172 |  | 
| 173 | Mat3x3d hmat = snap->getHmat(); | 
| 174 | RealType area = hmat(0,0) * hmat(1, 1); | 
| 175 |  | 
| 176 | RealType conservedQuantity = totalEnergy + thermostat_kinetic | 
| 177 | + thermostat_potential + barostat_kinetic + barostat_potential | 
| 178 | - surfaceTension * area/ PhysicalConstants::energyConvert; | 
| 179 |  | 
| 180 | return conservedQuantity; | 
| 181 |  | 
| 182 | } | 
| 183 |  | 
| 184 | void NgammaT::loadEta() { | 
| 185 | eta= snap->getBarostat(); | 
| 186 |  | 
| 187 | //if (!eta.isDiagonal()) { | 
| 188 | //    sprintf( painCave.errMsg, | 
| 189 | //             "NgammaT error: the diagonal elements of eta matrix are not the same or etaMat is not a diagonal matrix"); | 
| 190 | //    painCave.isFatal = 1; | 
| 191 | //    simError(); | 
| 192 | //} | 
| 193 | } | 
| 194 |  | 
| 195 | void NgammaT::saveEta() { | 
| 196 | snap->setBarostat(eta); | 
| 197 | } | 
| 198 |  | 
| 199 | } | 
| 200 |  | 
| 201 |  |