| 1 |
/* |
| 2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
* |
| 4 |
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
* non-exclusive, royalty free, license to use, modify and |
| 6 |
* redistribute this software in source and binary code form, provided |
| 7 |
* that the following conditions are met: |
| 8 |
* |
| 9 |
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
* publication of scientific results based in part on use of the |
| 11 |
* program. An acceptable form of acknowledgement is citation of |
| 12 |
* the article in which the program was described (Matthew |
| 13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
* |
| 18 |
* 2. Redistributions of source code must retain the above copyright |
| 19 |
* notice, this list of conditions and the following disclaimer. |
| 20 |
* |
| 21 |
* 3. Redistributions in binary form must reproduce the above copyright |
| 22 |
* notice, this list of conditions and the following disclaimer in the |
| 23 |
* documentation and/or other materials provided with the |
| 24 |
* distribution. |
| 25 |
* |
| 26 |
* This software is provided "AS IS," without a warranty of any |
| 27 |
* kind. All express or implied conditions, representations and |
| 28 |
* warranties, including any implied warranty of merchantability, |
| 29 |
* fitness for a particular purpose or non-infringement, are hereby |
| 30 |
* excluded. The University of Notre Dame and its licensors shall not |
| 31 |
* be liable for any damages suffered by licensee as a result of |
| 32 |
* using, modifying or distributing the software or its |
| 33 |
* derivatives. In no event will the University of Notre Dame or its |
| 34 |
* licensors be liable for any lost revenue, profit or data, or for |
| 35 |
* direct, indirect, special, consequential, incidental or punitive |
| 36 |
* damages, however caused and regardless of the theory of liability, |
| 37 |
* arising out of the use of or inability to use software, even if the |
| 38 |
* University of Notre Dame has been advised of the possibility of |
| 39 |
* such damages. |
| 40 |
*/ |
| 41 |
|
| 42 |
#include "integrators/Velocitizer.hpp" |
| 43 |
#include "math/SquareMatrix3.hpp" |
| 44 |
#include "primitives/Molecule.hpp" |
| 45 |
#include "primitives/StuntDouble.hpp" |
| 46 |
|
| 47 |
#ifndef IS_MPI |
| 48 |
#include "math/SeqRandNumGen.hpp" |
| 49 |
#else |
| 50 |
#include "math/ParallelRandNumGen.hpp" |
| 51 |
#endif |
| 52 |
|
| 53 |
/* Remove me after testing*/ |
| 54 |
#include <cstdio> |
| 55 |
#include <iostream> |
| 56 |
/*End remove me*/ |
| 57 |
|
| 58 |
namespace oopse { |
| 59 |
|
| 60 |
Velocitizer::Velocitizer(SimInfo* info) : info_(info) { |
| 61 |
|
| 62 |
int seedValue; |
| 63 |
Globals * simParams = info->getSimParams(); |
| 64 |
|
| 65 |
#ifndef IS_MPI |
| 66 |
if (simParams->haveSeed()) { |
| 67 |
seedValue = simParams->getSeed(); |
| 68 |
randNumGen_ = new SeqRandNumGen(seedValue); |
| 69 |
}else { |
| 70 |
randNumGen_ = new SeqRandNumGen(); |
| 71 |
} |
| 72 |
#else |
| 73 |
if (simParams->haveSeed()) { |
| 74 |
seedValue = simParams->getSeed(); |
| 75 |
randNumGen_ = new ParallelRandNumGen(seedValue); |
| 76 |
}else { |
| 77 |
randNumGen_ = new ParallelRandNumGen(); |
| 78 |
} |
| 79 |
#endif |
| 80 |
} |
| 81 |
|
| 82 |
Velocitizer::~Velocitizer() { |
| 83 |
delete randNumGen_; |
| 84 |
} |
| 85 |
|
| 86 |
void Velocitizer::velocitize(RealType temperature) { |
| 87 |
Vector3d aVel; |
| 88 |
Vector3d aJ; |
| 89 |
Mat3x3d I; |
| 90 |
int l; |
| 91 |
int m; |
| 92 |
int n; |
| 93 |
Vector3d vdrift; |
| 94 |
RealType vbar; |
| 95 |
/**@todo refactory kb */ |
| 96 |
const RealType kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. |
| 97 |
RealType av2; |
| 98 |
RealType kebar; |
| 99 |
|
| 100 |
Globals * simParams = info_->getSimParams(); |
| 101 |
|
| 102 |
SimInfo::MoleculeIterator i; |
| 103 |
Molecule::IntegrableObjectIterator j; |
| 104 |
Molecule * mol; |
| 105 |
StuntDouble * integrableObject; |
| 106 |
|
| 107 |
kebar = kb * temperature * info_->getNdfRaw() / (2.0 * info_->getNdf()); |
| 108 |
for( mol = info_->beginMolecule(i); mol != NULL; |
| 109 |
mol = info_->nextMolecule(i) ) { |
| 110 |
for( integrableObject = mol->beginIntegrableObject(j); |
| 111 |
integrableObject != NULL; |
| 112 |
integrableObject = mol->nextIntegrableObject(j) ) { |
| 113 |
|
| 114 |
// uses equipartition theory to solve for vbar in angstrom/fs |
| 115 |
|
| 116 |
av2 = 2.0 * kebar / integrableObject->getMass(); |
| 117 |
vbar = sqrt(av2); |
| 118 |
|
| 119 |
// picks random velocities from a gaussian distribution |
| 120 |
// centered on vbar |
| 121 |
|
| 122 |
for( int k = 0; k < 3; k++ ) { |
| 123 |
aVel[k] = vbar * randNumGen_->randNorm(0.0, 1.0); |
| 124 |
} |
| 125 |
integrableObject->setVel(aVel); |
| 126 |
|
| 127 |
if (integrableObject->isDirectional()) { |
| 128 |
I = integrableObject->getI(); |
| 129 |
|
| 130 |
if (integrableObject->isLinear()) { |
| 131 |
l = integrableObject->linearAxis(); |
| 132 |
m = (l + 1) % 3; |
| 133 |
n = (l + 2) % 3; |
| 134 |
|
| 135 |
aJ[l] = 0.0; |
| 136 |
vbar = sqrt(2.0 * kebar * I(m, m)); |
| 137 |
aJ[m] = vbar * randNumGen_->randNorm(0.0, 1.0); |
| 138 |
vbar = sqrt(2.0 * kebar * I(n, n)); |
| 139 |
aJ[n] = vbar * randNumGen_->randNorm(0.0, 1.0); |
| 140 |
} else { |
| 141 |
for( int k = 0; k < 3; k++ ) { |
| 142 |
vbar = sqrt(2.0 * kebar * I(k, k)); |
| 143 |
aJ[k] = vbar *randNumGen_->randNorm(0.0, 1.0); |
| 144 |
} |
| 145 |
} // else isLinear |
| 146 |
|
| 147 |
integrableObject->setJ(aJ); |
| 148 |
} //isDirectional |
| 149 |
} |
| 150 |
} //end for (mol = beginMolecule(i); ...) |
| 151 |
|
| 152 |
|
| 153 |
|
| 154 |
removeComDrift(); |
| 155 |
// Remove angular drift if we are not using periodic boundary conditions. |
| 156 |
if(!simParams->getUsePeriodicBoundaryConditions()) removeAngularDrift(); |
| 157 |
|
| 158 |
} |
| 159 |
|
| 160 |
|
| 161 |
|
| 162 |
void Velocitizer::removeComDrift() { |
| 163 |
// Get the Center of Mass drift velocity. |
| 164 |
Vector3d vdrift = info_->getComVel(); |
| 165 |
|
| 166 |
SimInfo::MoleculeIterator i; |
| 167 |
Molecule::IntegrableObjectIterator j; |
| 168 |
Molecule * mol; |
| 169 |
StuntDouble * integrableObject; |
| 170 |
|
| 171 |
// Corrects for the center of mass drift. |
| 172 |
// sums all the momentum and divides by total mass. |
| 173 |
for( mol = info_->beginMolecule(i); mol != NULL; |
| 174 |
mol = info_->nextMolecule(i) ) { |
| 175 |
for( integrableObject = mol->beginIntegrableObject(j); |
| 176 |
integrableObject != NULL; |
| 177 |
integrableObject = mol->nextIntegrableObject(j) ) { |
| 178 |
integrableObject->setVel(integrableObject->getVel() - vdrift); |
| 179 |
} |
| 180 |
} |
| 181 |
|
| 182 |
} |
| 183 |
|
| 184 |
|
| 185 |
void Velocitizer::removeAngularDrift() { |
| 186 |
// Get the Center of Mass drift velocity. |
| 187 |
|
| 188 |
Vector3d vdrift; |
| 189 |
Vector3d com; |
| 190 |
|
| 191 |
info_->getComAll(com,vdrift); |
| 192 |
|
| 193 |
Mat3x3d inertiaTensor; |
| 194 |
Vector3d angularMomentum; |
| 195 |
Vector3d omega; |
| 196 |
|
| 197 |
|
| 198 |
|
| 199 |
info_->getInertiaTensor(inertiaTensor,angularMomentum); |
| 200 |
// We now need the inverse of the inertia tensor. |
| 201 |
/* |
| 202 |
std::cerr << "Angular Momentum before is " |
| 203 |
<< angularMomentum << std::endl; |
| 204 |
std::cerr << "Inertia Tensor before is " |
| 205 |
<< inertiaTensor << std::endl; |
| 206 |
*/ |
| 207 |
inertiaTensor =inertiaTensor.inverse(); |
| 208 |
/* |
| 209 |
std::cerr << "Inertia Tensor after inverse is " |
| 210 |
<< inertiaTensor << std::endl; |
| 211 |
*/ |
| 212 |
omega = inertiaTensor*angularMomentum; |
| 213 |
|
| 214 |
SimInfo::MoleculeIterator i; |
| 215 |
Molecule::IntegrableObjectIterator j; |
| 216 |
Molecule * mol; |
| 217 |
StuntDouble * integrableObject; |
| 218 |
Vector3d tempComPos; |
| 219 |
|
| 220 |
// Corrects for the center of mass angular drift. |
| 221 |
// sums all the angular momentum and divides by total mass. |
| 222 |
for( mol = info_->beginMolecule(i); mol != NULL; |
| 223 |
mol = info_->nextMolecule(i) ) { |
| 224 |
for( integrableObject = mol->beginIntegrableObject(j); |
| 225 |
integrableObject != NULL; |
| 226 |
integrableObject = mol->nextIntegrableObject(j) ) { |
| 227 |
tempComPos = integrableObject->getPos()-com; |
| 228 |
integrableObject->setVel((integrableObject->getVel() - vdrift)-cross(omega,tempComPos)); |
| 229 |
} |
| 230 |
} |
| 231 |
|
| 232 |
angularMomentum = info_->getAngularMomentum(); |
| 233 |
/* |
| 234 |
std::cerr << "Angular Momentum after is " |
| 235 |
<< angularMomentum << std::endl; |
| 236 |
*/ |
| 237 |
|
| 238 |
} |
| 239 |
|
| 240 |
|
| 241 |
|
| 242 |
|
| 243 |
} |