| 1 |
/*
|
| 2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
|
| 3 |
*
|
| 4 |
* The University of Notre Dame grants you ("Licensee") a
|
| 5 |
* non-exclusive, royalty free, license to use, modify and
|
| 6 |
* redistribute this software in source and binary code form, provided
|
| 7 |
* that the following conditions are met:
|
| 8 |
*
|
| 9 |
* 1. Acknowledgement of the program authors must be made in any
|
| 10 |
* publication of scientific results based in part on use of the
|
| 11 |
* program. An acceptable form of acknowledgement is citation of
|
| 12 |
* the article in which the program was described (Matthew
|
| 13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
|
| 14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
|
| 15 |
* Parallel Simulation Engine for Molecular Dynamics,"
|
| 16 |
* J. Comput. Chem. 26, pp. 252-271 (2005))
|
| 17 |
*
|
| 18 |
* 2. Redistributions of source code must retain the above copyright
|
| 19 |
* notice, this list of conditions and the following disclaimer.
|
| 20 |
*
|
| 21 |
* 3. Redistributions in binary form must reproduce the above copyright
|
| 22 |
* notice, this list of conditions and the following disclaimer in the
|
| 23 |
* documentation and/or other materials provided with the
|
| 24 |
* distribution.
|
| 25 |
*
|
| 26 |
* This software is provided "AS IS," without a warranty of any
|
| 27 |
* kind. All express or implied conditions, representations and
|
| 28 |
* warranties, including any implied warranty of merchantability,
|
| 29 |
* fitness for a particular purpose or non-infringement, are hereby
|
| 30 |
* excluded. The University of Notre Dame and its licensors shall not
|
| 31 |
* be liable for any damages suffered by licensee as a result of
|
| 32 |
* using, modifying or distributing the software or its
|
| 33 |
* derivatives. In no event will the University of Notre Dame or its
|
| 34 |
* licensors be liable for any lost revenue, profit or data, or for
|
| 35 |
* direct, indirect, special, consequential, incidental or punitive
|
| 36 |
* damages, however caused and regardless of the theory of liability,
|
| 37 |
* arising out of the use of or inability to use software, even if the
|
| 38 |
* University of Notre Dame has been advised of the possibility of
|
| 39 |
* such damages.
|
| 40 |
*/
|
| 41 |
|
| 42 |
#include "integrators/Velocitizer.hpp"
|
| 43 |
#include "math/SquareMatrix3.hpp"
|
| 44 |
#include "primitives/Molecule.hpp"
|
| 45 |
#include "primitives/StuntDouble.hpp"
|
| 46 |
|
| 47 |
#ifndef IS_MPI
|
| 48 |
#include "math/SeqRandNumGen.hpp"
|
| 49 |
#else
|
| 50 |
#include "math/ParallelRandNumGen.hpp"
|
| 51 |
#endif
|
| 52 |
|
| 53 |
/* Remove me after testing*/
|
| 54 |
#include <cstdio>
|
| 55 |
#include <iostream>
|
| 56 |
/*End remove me*/
|
| 57 |
|
| 58 |
namespace oopse {
|
| 59 |
|
| 60 |
Velocitizer::Velocitizer(SimInfo* info) : info_(info) {
|
| 61 |
|
| 62 |
int seedValue;
|
| 63 |
Globals * simParams = info->getSimParams();
|
| 64 |
|
| 65 |
#ifndef IS_MPI
|
| 66 |
if (simParams->haveSeed()) {
|
| 67 |
seedValue = simParams->getSeed();
|
| 68 |
randNumGen_ = new SeqRandNumGen(seedValue);
|
| 69 |
}else {
|
| 70 |
randNumGen_ = new SeqRandNumGen();
|
| 71 |
}
|
| 72 |
#else
|
| 73 |
if (simParams->haveSeed()) {
|
| 74 |
seedValue = simParams->getSeed();
|
| 75 |
randNumGen_ = new ParallelRandNumGen(seedValue);
|
| 76 |
}else {
|
| 77 |
randNumGen_ = new ParallelRandNumGen();
|
| 78 |
}
|
| 79 |
#endif
|
| 80 |
}
|
| 81 |
|
| 82 |
Velocitizer::~Velocitizer() {
|
| 83 |
delete randNumGen_;
|
| 84 |
}
|
| 85 |
|
| 86 |
void Velocitizer::velocitize(RealType temperature) {
|
| 87 |
Vector3d aVel;
|
| 88 |
Vector3d aJ;
|
| 89 |
Mat3x3d I;
|
| 90 |
int l;
|
| 91 |
int m;
|
| 92 |
int n;
|
| 93 |
Vector3d vdrift;
|
| 94 |
RealType vbar;
|
| 95 |
/**@todo refactory kb */
|
| 96 |
const RealType kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
|
| 97 |
RealType av2;
|
| 98 |
RealType kebar;
|
| 99 |
|
| 100 |
Globals * simParams = info_->getSimParams();
|
| 101 |
|
| 102 |
SimInfo::MoleculeIterator i;
|
| 103 |
Molecule::IntegrableObjectIterator j;
|
| 104 |
Molecule * mol;
|
| 105 |
StuntDouble * integrableObject;
|
| 106 |
|
| 107 |
|
| 108 |
|
| 109 |
kebar = kb * temperature * info_->getNdfRaw() / (2.0 * info_->getNdf());
|
| 110 |
|
| 111 |
for( mol = info_->beginMolecule(i); mol != NULL;
|
| 112 |
mol = info_->nextMolecule(i) ) {
|
| 113 |
for( integrableObject = mol->beginIntegrableObject(j);
|
| 114 |
integrableObject != NULL;
|
| 115 |
integrableObject = mol->nextIntegrableObject(j) ) {
|
| 116 |
|
| 117 |
// uses equipartition theory to solve for vbar in angstrom/fs
|
| 118 |
|
| 119 |
av2 = 2.0 * kebar / integrableObject->getMass();
|
| 120 |
vbar = sqrt(av2);
|
| 121 |
|
| 122 |
// picks random velocities from a gaussian distribution
|
| 123 |
// centered on vbar
|
| 124 |
|
| 125 |
for( int k = 0; k < 3; k++ ) {
|
| 126 |
aVel[k] = vbar * randNumGen_->randNorm(0.0, 1.0);
|
| 127 |
}
|
| 128 |
|
| 129 |
integrableObject->setVel(aVel);
|
| 130 |
|
| 131 |
if (integrableObject->isDirectional()) {
|
| 132 |
I = integrableObject->getI();
|
| 133 |
|
| 134 |
if (integrableObject->isLinear()) {
|
| 135 |
l = integrableObject->linearAxis();
|
| 136 |
m = (l + 1) % 3;
|
| 137 |
n = (l + 2) % 3;
|
| 138 |
|
| 139 |
aJ[l] = 0.0;
|
| 140 |
vbar = sqrt(2.0 * kebar * I(m, m));
|
| 141 |
aJ[m] = vbar * randNumGen_->randNorm(0.0, 1.0);
|
| 142 |
vbar = sqrt(2.0 * kebar * I(n, n));
|
| 143 |
aJ[n] = vbar * randNumGen_->randNorm(0.0, 1.0);
|
| 144 |
} else {
|
| 145 |
for( int k = 0; k < 3; k++ ) {
|
| 146 |
vbar = sqrt(2.0 * kebar * I(k, k));
|
| 147 |
aJ[k] = vbar *randNumGen_->randNorm(0.0, 1.0);
|
| 148 |
}
|
| 149 |
} // else isLinear
|
| 150 |
|
| 151 |
integrableObject->setJ(aJ);
|
| 152 |
} //isDirectional
|
| 153 |
}
|
| 154 |
} //end for (mol = beginMolecule(i); ...)
|
| 155 |
|
| 156 |
|
| 157 |
|
| 158 |
removeComDrift();
|
| 159 |
// Remove angular drift if we are not using periodic boundary conditions.
|
| 160 |
if(!simParams->getUsePeriodicBoundaryConditions()) removeAngularDrift();
|
| 161 |
|
| 162 |
}
|
| 163 |
|
| 164 |
|
| 165 |
|
| 166 |
void Velocitizer::removeComDrift() {
|
| 167 |
// Get the Center of Mass drift velocity.
|
| 168 |
Vector3d vdrift = info_->getComVel();
|
| 169 |
|
| 170 |
SimInfo::MoleculeIterator i;
|
| 171 |
Molecule::IntegrableObjectIterator j;
|
| 172 |
Molecule * mol;
|
| 173 |
StuntDouble * integrableObject;
|
| 174 |
|
| 175 |
// Corrects for the center of mass drift.
|
| 176 |
// sums all the momentum and divides by total mass.
|
| 177 |
for( mol = info_->beginMolecule(i); mol != NULL;
|
| 178 |
mol = info_->nextMolecule(i) ) {
|
| 179 |
for( integrableObject = mol->beginIntegrableObject(j);
|
| 180 |
integrableObject != NULL;
|
| 181 |
integrableObject = mol->nextIntegrableObject(j) ) {
|
| 182 |
integrableObject->setVel(integrableObject->getVel() - vdrift);
|
| 183 |
}
|
| 184 |
}
|
| 185 |
|
| 186 |
}
|
| 187 |
|
| 188 |
|
| 189 |
void Velocitizer::removeAngularDrift() {
|
| 190 |
// Get the Center of Mass drift velocity.
|
| 191 |
|
| 192 |
Vector3d vdrift;
|
| 193 |
Vector3d com;
|
| 194 |
|
| 195 |
info_->getComAll(com,vdrift);
|
| 196 |
|
| 197 |
Mat3x3d inertiaTensor;
|
| 198 |
Vector3d angularMomentum;
|
| 199 |
Vector3d omega;
|
| 200 |
|
| 201 |
|
| 202 |
|
| 203 |
info_->getInertiaTensor(inertiaTensor,angularMomentum);
|
| 204 |
// We now need the inverse of the inertia tensor.
|
| 205 |
/*
|
| 206 |
std::cerr << "Angular Momentum before is "
|
| 207 |
<< angularMomentum << std::endl;
|
| 208 |
std::cerr << "Inertia Tensor before is "
|
| 209 |
<< inertiaTensor << std::endl;
|
| 210 |
*/
|
| 211 |
|
| 212 |
inertiaTensor =inertiaTensor.inverse();
|
| 213 |
/*
|
| 214 |
std::cerr << "Inertia Tensor after inverse is "
|
| 215 |
<< inertiaTensor << std::endl;
|
| 216 |
*/
|
| 217 |
omega = inertiaTensor*angularMomentum;
|
| 218 |
|
| 219 |
SimInfo::MoleculeIterator i;
|
| 220 |
Molecule::IntegrableObjectIterator j;
|
| 221 |
Molecule * mol;
|
| 222 |
StuntDouble * integrableObject;
|
| 223 |
Vector3d tempComPos;
|
| 224 |
|
| 225 |
// Corrects for the center of mass angular drift.
|
| 226 |
// sums all the angular momentum and divides by total mass.
|
| 227 |
for( mol = info_->beginMolecule(i); mol != NULL;
|
| 228 |
mol = info_->nextMolecule(i) ) {
|
| 229 |
for( integrableObject = mol->beginIntegrableObject(j);
|
| 230 |
integrableObject != NULL;
|
| 231 |
integrableObject = mol->nextIntegrableObject(j) ) {
|
| 232 |
tempComPos = integrableObject->getPos()-com;
|
| 233 |
integrableObject->setVel((integrableObject->getVel() - vdrift)-cross(omega,tempComPos));
|
| 234 |
}
|
| 235 |
}
|
| 236 |
|
| 237 |
angularMomentum = info_->getAngularMomentum();
|
| 238 |
/*
|
| 239 |
std::cerr << "Angular Momentum after is "
|
| 240 |
<< angularMomentum << std::endl;
|
| 241 |
*/
|
| 242 |
|
| 243 |
}
|
| 244 |
|
| 245 |
|
| 246 |
|
| 247 |
|
| 248 |
}
|