| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | */ | 
| 42 |  | 
| 43 | #include "integrators/Velocitizer.hpp" | 
| 44 | #include "math/SquareMatrix3.hpp" | 
| 45 | #include "primitives/Molecule.hpp" | 
| 46 | #include "primitives/StuntDouble.hpp" | 
| 47 |  | 
| 48 | #ifndef IS_MPI | 
| 49 | #include "math/SeqRandNumGen.hpp" | 
| 50 | #else | 
| 51 | #include "math/ParallelRandNumGen.hpp" | 
| 52 | #endif | 
| 53 |  | 
| 54 | namespace OpenMD { | 
| 55 |  | 
| 56 | Velocitizer::Velocitizer(SimInfo* info) : info_(info), thermo(info) { | 
| 57 |  | 
| 58 |  | 
| 59 | Globals * simParams = info->getSimParams(); | 
| 60 |  | 
| 61 | #ifndef IS_MPI | 
| 62 | if (simParams->haveSeed()) { | 
| 63 | int seedValue = simParams->getSeed(); | 
| 64 | randNumGen_ = new SeqRandNumGen(seedValue); | 
| 65 | }else { | 
| 66 | randNumGen_ = new SeqRandNumGen(); | 
| 67 | } | 
| 68 | #else | 
| 69 | if (simParams->haveSeed()) { | 
| 70 | int seedValue = simParams->getSeed(); | 
| 71 | randNumGen_ = new ParallelRandNumGen(seedValue); | 
| 72 | }else { | 
| 73 | randNumGen_ = new ParallelRandNumGen(); | 
| 74 | } | 
| 75 | #endif | 
| 76 | } | 
| 77 |  | 
| 78 | Velocitizer::~Velocitizer() { | 
| 79 | delete randNumGen_; | 
| 80 | } | 
| 81 |  | 
| 82 | void Velocitizer::velocitize(RealType temperature) { | 
| 83 | Vector3d aVel; | 
| 84 | Vector3d aJ; | 
| 85 | Mat3x3d I; | 
| 86 | int l, m, n; | 
| 87 | Vector3d vdrift; | 
| 88 | RealType vbar; | 
| 89 | /**@todo refactor kb */ | 
| 90 | const RealType kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. | 
| 91 | RealType av2; | 
| 92 | RealType kebar; | 
| 93 |  | 
| 94 | Globals * simParams = info_->getSimParams(); | 
| 95 |  | 
| 96 | SimInfo::MoleculeIterator i; | 
| 97 | Molecule::IntegrableObjectIterator j; | 
| 98 | Molecule * mol; | 
| 99 | StuntDouble * sd; | 
| 100 |  | 
| 101 | kebar = kb * temperature * info_->getNdfRaw() / (2.0 * info_->getNdf()); | 
| 102 |  | 
| 103 | for( mol = info_->beginMolecule(i); mol != NULL; | 
| 104 | mol = info_->nextMolecule(i) ) { | 
| 105 |  | 
| 106 | for( sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 107 | sd = mol->nextIntegrableObject(j) ) { | 
| 108 |  | 
| 109 | // uses equipartition theory to solve for vbar in angstrom/fs | 
| 110 |  | 
| 111 | av2 = 2.0 * kebar / sd->getMass(); | 
| 112 | vbar = sqrt(av2); | 
| 113 |  | 
| 114 | // picks random velocities from a gaussian distribution | 
| 115 | // centered on vbar | 
| 116 |  | 
| 117 | for( int k = 0; k < 3; k++ ) { | 
| 118 | aVel[k] = vbar * randNumGen_->randNorm(0.0, 1.0); | 
| 119 | } | 
| 120 | sd->setVel(aVel); | 
| 121 |  | 
| 122 | if (sd->isDirectional()) { | 
| 123 | I = sd->getI(); | 
| 124 |  | 
| 125 | if (sd->isLinear()) { | 
| 126 | l = sd->linearAxis(); | 
| 127 | m = (l + 1) % 3; | 
| 128 | n = (l + 2) % 3; | 
| 129 |  | 
| 130 | aJ[l] = 0.0; | 
| 131 | vbar = sqrt(2.0 * kebar * I(m, m)); | 
| 132 | aJ[m] = vbar * randNumGen_->randNorm(0.0, 1.0); | 
| 133 | vbar = sqrt(2.0 * kebar * I(n, n)); | 
| 134 | aJ[n] = vbar * randNumGen_->randNorm(0.0, 1.0); | 
| 135 | } else { | 
| 136 | for( int k = 0; k < 3; k++ ) { | 
| 137 | vbar = sqrt(2.0 * kebar * I(k, k)); | 
| 138 | aJ[k] = vbar *randNumGen_->randNorm(0.0, 1.0); | 
| 139 | } | 
| 140 | } | 
| 141 |  | 
| 142 | sd->setJ(aJ); | 
| 143 | } | 
| 144 | } | 
| 145 | } | 
| 146 |  | 
| 147 | removeComDrift(); | 
| 148 |  | 
| 149 | // Remove angular drift if we are not using periodic boundary | 
| 150 | // conditions: | 
| 151 |  | 
| 152 | if(!simParams->getUsePeriodicBoundaryConditions()) removeAngularDrift(); | 
| 153 | } | 
| 154 |  | 
| 155 | void Velocitizer::removeComDrift() { | 
| 156 | // Get the Center of Mass drift velocity. | 
| 157 | Vector3d vdrift = thermo.getComVel(); | 
| 158 |  | 
| 159 | SimInfo::MoleculeIterator i; | 
| 160 | Molecule::IntegrableObjectIterator j; | 
| 161 | Molecule * mol; | 
| 162 | StuntDouble * sd; | 
| 163 |  | 
| 164 | //  Corrects for the center of mass drift. | 
| 165 | // sums all the momentum and divides by total mass. | 
| 166 | for( mol = info_->beginMolecule(i); mol != NULL; | 
| 167 | mol = info_->nextMolecule(i) ) { | 
| 168 |  | 
| 169 | for( sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 170 | sd = mol->nextIntegrableObject(j) ) { | 
| 171 |  | 
| 172 | sd->setVel(sd->getVel() - vdrift); | 
| 173 |  | 
| 174 | } | 
| 175 | } | 
| 176 | } | 
| 177 |  | 
| 178 | void Velocitizer::removeAngularDrift() { | 
| 179 | // Get the Center of Mass drift velocity. | 
| 180 |  | 
| 181 | Vector3d vdrift; | 
| 182 | Vector3d com; | 
| 183 |  | 
| 184 | thermo.getComAll(com, vdrift); | 
| 185 |  | 
| 186 | Mat3x3d inertiaTensor; | 
| 187 | Vector3d angularMomentum; | 
| 188 | Vector3d omega; | 
| 189 |  | 
| 190 | thermo.getInertiaTensor(inertiaTensor, angularMomentum); | 
| 191 |  | 
| 192 | // We now need the inverse of the inertia tensor. | 
| 193 | inertiaTensor = inertiaTensor.inverse(); | 
| 194 | omega = inertiaTensor * angularMomentum; | 
| 195 |  | 
| 196 | SimInfo::MoleculeIterator i; | 
| 197 | Molecule::IntegrableObjectIterator j; | 
| 198 | Molecule* mol; | 
| 199 | StuntDouble* sd; | 
| 200 | Vector3d tempComPos; | 
| 201 |  | 
| 202 | // Corrects for the center of mass angular drift by summing all | 
| 203 | // the angular momentum and dividing by the total mass. | 
| 204 |  | 
| 205 | for( mol = info_->beginMolecule(i); mol != NULL; | 
| 206 | mol = info_->nextMolecule(i) ) { | 
| 207 |  | 
| 208 | for( sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 209 | sd = mol->nextIntegrableObject(j) ) { | 
| 210 |  | 
| 211 | tempComPos = sd->getPos() - com; | 
| 212 | sd->setVel((sd->getVel() - vdrift) - cross(omega, tempComPos)); | 
| 213 |  | 
| 214 | } | 
| 215 | } | 
| 216 | } | 
| 217 | } |