| 1 | 
< | 
 /* | 
| 1 | 
> | 
/* | 
| 2 | 
  | 
 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | 
  | 
 * | 
| 4 | 
  | 
 * The University of Notre Dame grants you ("Licensee") a | 
| 38 | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 39 | 
  | 
 * such damages. | 
| 40 | 
  | 
 */ | 
| 41 | 
< | 
   | 
| 41 | 
> | 
 | 
| 42 | 
  | 
#include "integrators/Velocitizer.hpp" | 
| 43 | 
  | 
#include "math/SquareMatrix3.hpp" | 
| 44 | 
  | 
#include "primitives/Molecule.hpp" | 
| 51 | 
  | 
#endif | 
| 52 | 
  | 
 | 
| 53 | 
  | 
namespace oopse { | 
| 54 | 
< | 
 | 
| 55 | 
< | 
Velocitizer::Velocitizer(SimInfo* info) : info_(info) { | 
| 56 | 
< | 
 | 
| 54 | 
> | 
   | 
| 55 | 
> | 
  Velocitizer::Velocitizer(SimInfo* info) : info_(info) { | 
| 56 | 
> | 
     | 
| 57 | 
  | 
    int seedValue; | 
| 58 | 
  | 
    Globals * simParams = info->getSimParams(); | 
| 59 | 
< | 
 | 
| 59 | 
> | 
     | 
| 60 | 
  | 
#ifndef IS_MPI | 
| 61 | 
  | 
    if (simParams->haveSeed()) { | 
| 62 | 
< | 
        seedValue = simParams->getSeed(); | 
| 63 | 
< | 
        randNumGen_ = new SeqRandNumGen(seedValue); | 
| 62 | 
> | 
      seedValue = simParams->getSeed(); | 
| 63 | 
> | 
      randNumGen_ = new SeqRandNumGen(seedValue); | 
| 64 | 
  | 
    }else { | 
| 65 | 
< | 
        randNumGen_ = new SeqRandNumGen(); | 
| 65 | 
> | 
      randNumGen_ = new SeqRandNumGen(); | 
| 66 | 
  | 
    }     | 
| 67 | 
  | 
#else | 
| 68 | 
  | 
    if (simParams->haveSeed()) { | 
| 69 | 
< | 
        seedValue = simParams->getSeed(); | 
| 70 | 
< | 
        randNumGen_ = new ParallelRandNumGen(seedValue); | 
| 69 | 
> | 
      seedValue = simParams->getSeed(); | 
| 70 | 
> | 
      randNumGen_ = new ParallelRandNumGen(seedValue); | 
| 71 | 
  | 
    }else { | 
| 72 | 
< | 
        randNumGen_ = new ParallelRandNumGen(); | 
| 72 | 
> | 
      randNumGen_ = new ParallelRandNumGen(); | 
| 73 | 
  | 
    }     | 
| 74 | 
  | 
#endif  | 
| 75 | 
< | 
} | 
| 76 | 
< | 
 | 
| 77 | 
< | 
Velocitizer::~Velocitizer() { | 
| 75 | 
> | 
  } | 
| 76 | 
> | 
   | 
| 77 | 
> | 
  Velocitizer::~Velocitizer() { | 
| 78 | 
  | 
    delete randNumGen_; | 
| 79 | 
< | 
} | 
| 80 | 
< | 
 | 
| 81 | 
< | 
void Velocitizer::velocitize(double temperature) { | 
| 79 | 
> | 
  } | 
| 80 | 
> | 
   | 
| 81 | 
> | 
  void Velocitizer::velocitize(double temperature) { | 
| 82 | 
  | 
    Vector3d aVel; | 
| 83 | 
  | 
    Vector3d aJ; | 
| 84 | 
  | 
    Mat3x3d I; | 
| 91 | 
  | 
    const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. | 
| 92 | 
  | 
    double av2; | 
| 93 | 
  | 
    double kebar; | 
| 94 | 
< | 
 | 
| 94 | 
> | 
     | 
| 95 | 
  | 
    SimInfo::MoleculeIterator i; | 
| 96 | 
  | 
    Molecule::IntegrableObjectIterator j; | 
| 97 | 
  | 
    Molecule * mol; | 
| 98 | 
  | 
    StuntDouble * integrableObject; | 
| 99 | 
< | 
 | 
| 100 | 
< | 
 | 
| 101 | 
< | 
 | 
| 99 | 
> | 
     | 
| 100 | 
> | 
     | 
| 101 | 
> | 
     | 
| 102 | 
  | 
    kebar = kb * temperature * info_->getNdfRaw() / (2.0 * info_->getNdf()); | 
| 103 | 
< | 
 | 
| 103 | 
> | 
     | 
| 104 | 
  | 
    for( mol = info_->beginMolecule(i); mol != NULL; | 
| 105 | 
< | 
        mol = info_->nextMolecule(i) ) { | 
| 106 | 
< | 
        for( integrableObject = mol->beginIntegrableObject(j); | 
| 107 | 
< | 
            integrableObject != NULL; | 
| 108 | 
< | 
            integrableObject = mol->nextIntegrableObject(j) ) { | 
| 109 | 
< | 
 | 
| 110 | 
< | 
            // uses equipartition theory to solve for vbar in angstrom/fs | 
| 111 | 
< | 
 | 
| 112 | 
< | 
            av2 = 2.0 * kebar / integrableObject->getMass(); | 
| 113 | 
< | 
            vbar = sqrt(av2); | 
| 114 | 
< | 
 | 
| 115 | 
< | 
            // picks random velocities from a gaussian distribution | 
| 116 | 
< | 
            // centered on vbar | 
| 117 | 
< | 
 | 
| 118 | 
< | 
            for( int k = 0; k < 3; k++ ) { | 
| 119 | 
< | 
                aVel[k] = vbar * randNumGen_->randNorm(0.0, 1.0); | 
| 120 | 
< | 
            } | 
| 121 | 
< | 
 | 
| 122 | 
< | 
            integrableObject->setVel(aVel); | 
| 123 | 
< | 
 | 
| 124 | 
< | 
            if (integrableObject->isDirectional()) { | 
| 125 | 
< | 
                I = integrableObject->getI(); | 
| 126 | 
< | 
 | 
| 127 | 
< | 
                if (integrableObject->isLinear()) { | 
| 128 | 
< | 
                    l = integrableObject->linearAxis(); | 
| 129 | 
< | 
                    m = (l + 1) % 3; | 
| 130 | 
< | 
                    n = (l + 2) % 3; | 
| 131 | 
< | 
 | 
| 132 | 
< | 
                    aJ[l] = 0.0; | 
| 133 | 
< | 
                    vbar = sqrt(2.0 * kebar * I(m, m)); | 
| 134 | 
< | 
                    aJ[m] = vbar * randNumGen_->randNorm(0.0, 1.0); | 
| 135 | 
< | 
                    vbar = sqrt(2.0 * kebar * I(n, n)); | 
| 136 | 
< | 
                    aJ[n] = vbar * randNumGen_->randNorm(0.0, 1.0); | 
| 137 | 
< | 
                } else { | 
| 138 | 
< | 
                    for( int k = 0; k < 3; k++ ) { | 
| 139 | 
< | 
                        vbar = sqrt(2.0 * kebar * I(k, k)); | 
| 140 | 
< | 
                        aJ[k] = vbar *randNumGen_->randNorm(0.0, 1.0); | 
| 141 | 
< | 
                    } | 
| 142 | 
< | 
                } // else isLinear | 
| 143 | 
< | 
 | 
| 144 | 
< | 
                integrableObject->setJ(aJ); | 
| 145 | 
< | 
            }     //isDirectional  | 
| 146 | 
< | 
        } | 
| 105 | 
> | 
         mol = info_->nextMolecule(i) ) { | 
| 106 | 
> | 
      for( integrableObject = mol->beginIntegrableObject(j); | 
| 107 | 
> | 
           integrableObject != NULL; | 
| 108 | 
> | 
           integrableObject = mol->nextIntegrableObject(j) ) { | 
| 109 | 
> | 
         | 
| 110 | 
> | 
        // uses equipartition theory to solve for vbar in angstrom/fs | 
| 111 | 
> | 
         | 
| 112 | 
> | 
        av2 = 2.0 * kebar / integrableObject->getMass(); | 
| 113 | 
> | 
        vbar = sqrt(av2); | 
| 114 | 
> | 
         | 
| 115 | 
> | 
        // picks random velocities from a gaussian distribution | 
| 116 | 
> | 
        // centered on vbar | 
| 117 | 
> | 
         | 
| 118 | 
> | 
        for( int k = 0; k < 3; k++ ) { | 
| 119 | 
> | 
          aVel[k] = vbar * randNumGen_->randNorm(0.0, 1.0); | 
| 120 | 
> | 
        } | 
| 121 | 
> | 
         | 
| 122 | 
> | 
        integrableObject->setVel(aVel); | 
| 123 | 
> | 
         | 
| 124 | 
> | 
        if (integrableObject->isDirectional()) { | 
| 125 | 
> | 
          I = integrableObject->getI(); | 
| 126 | 
> | 
           | 
| 127 | 
> | 
          if (integrableObject->isLinear()) { | 
| 128 | 
> | 
            l = integrableObject->linearAxis(); | 
| 129 | 
> | 
            m = (l + 1) % 3; | 
| 130 | 
> | 
            n = (l + 2) % 3; | 
| 131 | 
> | 
             | 
| 132 | 
> | 
            aJ[l] = 0.0; | 
| 133 | 
> | 
            vbar = sqrt(2.0 * kebar * I(m, m)); | 
| 134 | 
> | 
            aJ[m] = vbar * randNumGen_->randNorm(0.0, 1.0); | 
| 135 | 
> | 
            vbar = sqrt(2.0 * kebar * I(n, n)); | 
| 136 | 
> | 
            aJ[n] = vbar * randNumGen_->randNorm(0.0, 1.0); | 
| 137 | 
> | 
          } else { | 
| 138 | 
> | 
            for( int k = 0; k < 3; k++ ) { | 
| 139 | 
> | 
              vbar = sqrt(2.0 * kebar * I(k, k)); | 
| 140 | 
> | 
              aJ[k] = vbar *randNumGen_->randNorm(0.0, 1.0); | 
| 141 | 
> | 
            } | 
| 142 | 
> | 
          } // else isLinear | 
| 143 | 
> | 
           | 
| 144 | 
> | 
          integrableObject->setJ(aJ); | 
| 145 | 
> | 
        }     //isDirectional  | 
| 146 | 
> | 
      } | 
| 147 | 
  | 
    }             //end for (mol = beginMolecule(i); ...) | 
| 148 | 
< | 
 | 
| 149 | 
< | 
 | 
| 150 | 
< | 
 | 
| 148 | 
> | 
     | 
| 149 | 
> | 
     | 
| 150 | 
> | 
     | 
| 151 | 
  | 
    removeComDrift(); | 
| 152 | 
< | 
 | 
| 153 | 
< | 
} | 
| 154 | 
< | 
 | 
| 155 | 
< | 
 | 
| 156 | 
< | 
 | 
| 157 | 
< | 
void Velocitizer::removeComDrift() { | 
| 152 | 
> | 
     | 
| 153 | 
> | 
  } | 
| 154 | 
> | 
   | 
| 155 | 
> | 
   | 
| 156 | 
> | 
   | 
| 157 | 
> | 
  void Velocitizer::removeComDrift() { | 
| 158 | 
  | 
    // Get the Center of Mass drift velocity. | 
| 159 | 
  | 
    Vector3d vdrift = info_->getComVel(); | 
| 160 | 
  | 
     | 
| 166 | 
  | 
    //  Corrects for the center of mass drift. | 
| 167 | 
  | 
    // sums all the momentum and divides by total mass. | 
| 168 | 
  | 
    for( mol = info_->beginMolecule(i); mol != NULL; | 
| 169 | 
< | 
        mol = info_->nextMolecule(i) ) { | 
| 170 | 
< | 
        for( integrableObject = mol->beginIntegrableObject(j); | 
| 171 | 
< | 
            integrableObject != NULL; | 
| 172 | 
< | 
            integrableObject = mol->nextIntegrableObject(j) ) { | 
| 173 | 
< | 
            integrableObject->setVel(integrableObject->getVel() - vdrift); | 
| 174 | 
< | 
        } | 
| 169 | 
> | 
         mol = info_->nextMolecule(i) ) { | 
| 170 | 
> | 
      for( integrableObject = mol->beginIntegrableObject(j); | 
| 171 | 
> | 
           integrableObject != NULL; | 
| 172 | 
> | 
           integrableObject = mol->nextIntegrableObject(j) ) { | 
| 173 | 
> | 
        integrableObject->setVel(integrableObject->getVel() - vdrift); | 
| 174 | 
> | 
      } | 
| 175 | 
  | 
    } | 
| 176 | 
< | 
 | 
| 176 | 
> | 
     | 
| 177 | 
> | 
  } | 
| 178 | 
> | 
   | 
| 179 | 
  | 
} | 
| 178 | 
– | 
 | 
| 179 | 
– | 
} |