| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 40 | */ | 
| 41 |  | 
| 42 | #include "integrators/Velocitizer.hpp" | 
| 43 | #include "math/SquareMatrix3.hpp" | 
| 44 | #include "primitives/Molecule.hpp" | 
| 45 | #include "primitives/StuntDouble.hpp" | 
| 46 |  | 
| 47 | #ifndef IS_MPI | 
| 48 | #include "math/SeqRandNumGen.hpp" | 
| 49 | #else | 
| 50 | #include "math/ParallelRandNumGen.hpp" | 
| 51 | #endif | 
| 52 |  | 
| 53 | /* Remove me after testing*/ | 
| 54 | /* | 
| 55 | #include <cstdio> | 
| 56 | #include <iostream> | 
| 57 | */ | 
| 58 | /*End remove me*/ | 
| 59 |  | 
| 60 | namespace OpenMD { | 
| 61 |  | 
| 62 | Velocitizer::Velocitizer(SimInfo* info) : info_(info) { | 
| 63 |  | 
| 64 | int seedValue; | 
| 65 | Globals * simParams = info->getSimParams(); | 
| 66 |  | 
| 67 | #ifndef IS_MPI | 
| 68 | if (simParams->haveSeed()) { | 
| 69 | seedValue = simParams->getSeed(); | 
| 70 | randNumGen_ = new SeqRandNumGen(seedValue); | 
| 71 | }else { | 
| 72 | randNumGen_ = new SeqRandNumGen(); | 
| 73 | } | 
| 74 | #else | 
| 75 | if (simParams->haveSeed()) { | 
| 76 | seedValue = simParams->getSeed(); | 
| 77 | randNumGen_ = new ParallelRandNumGen(seedValue); | 
| 78 | }else { | 
| 79 | randNumGen_ = new ParallelRandNumGen(); | 
| 80 | } | 
| 81 | #endif | 
| 82 | } | 
| 83 |  | 
| 84 | Velocitizer::~Velocitizer() { | 
| 85 | delete randNumGen_; | 
| 86 | } | 
| 87 |  | 
| 88 | void Velocitizer::velocitize(RealType temperature) { | 
| 89 | Vector3d aVel; | 
| 90 | Vector3d aJ; | 
| 91 | Mat3x3d I; | 
| 92 | int l; | 
| 93 | int m; | 
| 94 | int n; | 
| 95 | Vector3d vdrift; | 
| 96 | RealType vbar; | 
| 97 | /**@todo refactory kb */ | 
| 98 | const RealType kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. | 
| 99 | RealType av2; | 
| 100 | RealType kebar; | 
| 101 |  | 
| 102 | Globals * simParams = info_->getSimParams(); | 
| 103 |  | 
| 104 | SimInfo::MoleculeIterator i; | 
| 105 | Molecule::IntegrableObjectIterator j; | 
| 106 | Molecule * mol; | 
| 107 | StuntDouble * integrableObject; | 
| 108 |  | 
| 109 | kebar = kb * temperature * info_->getNdfRaw() / (2.0 * info_->getNdf()); | 
| 110 | for( mol = info_->beginMolecule(i); mol != NULL; | 
| 111 | mol = info_->nextMolecule(i) ) { | 
| 112 | for( integrableObject = mol->beginIntegrableObject(j); | 
| 113 | integrableObject != NULL; | 
| 114 | integrableObject = mol->nextIntegrableObject(j) ) { | 
| 115 |  | 
| 116 | // uses equipartition theory to solve for vbar in angstrom/fs | 
| 117 |  | 
| 118 | av2 = 2.0 * kebar / integrableObject->getMass(); | 
| 119 | vbar = sqrt(av2); | 
| 120 |  | 
| 121 | // picks random velocities from a gaussian distribution | 
| 122 | // centered on vbar | 
| 123 |  | 
| 124 | for( int k = 0; k < 3; k++ ) { | 
| 125 | aVel[k] = vbar * randNumGen_->randNorm(0.0, 1.0); | 
| 126 | } | 
| 127 | integrableObject->setVel(aVel); | 
| 128 |  | 
| 129 | if (integrableObject->isDirectional()) { | 
| 130 | I = integrableObject->getI(); | 
| 131 |  | 
| 132 | if (integrableObject->isLinear()) { | 
| 133 | l = integrableObject->linearAxis(); | 
| 134 | m = (l + 1) % 3; | 
| 135 | n = (l + 2) % 3; | 
| 136 |  | 
| 137 | aJ[l] = 0.0; | 
| 138 | vbar = sqrt(2.0 * kebar * I(m, m)); | 
| 139 | aJ[m] = vbar * randNumGen_->randNorm(0.0, 1.0); | 
| 140 | vbar = sqrt(2.0 * kebar * I(n, n)); | 
| 141 | aJ[n] = vbar * randNumGen_->randNorm(0.0, 1.0); | 
| 142 | } else { | 
| 143 | for( int k = 0; k < 3; k++ ) { | 
| 144 | vbar = sqrt(2.0 * kebar * I(k, k)); | 
| 145 | aJ[k] = vbar *randNumGen_->randNorm(0.0, 1.0); | 
| 146 | } | 
| 147 | } // else isLinear | 
| 148 |  | 
| 149 | integrableObject->setJ(aJ); | 
| 150 | }     //isDirectional | 
| 151 | } | 
| 152 | }             //end for (mol = beginMolecule(i); ...) | 
| 153 |  | 
| 154 |  | 
| 155 |  | 
| 156 | removeComDrift(); | 
| 157 | // Remove angular drift if we are not using periodic boundary conditions. | 
| 158 | if(!simParams->getUsePeriodicBoundaryConditions()) removeAngularDrift(); | 
| 159 |  | 
| 160 | } | 
| 161 |  | 
| 162 |  | 
| 163 |  | 
| 164 | void Velocitizer::removeComDrift() { | 
| 165 | // Get the Center of Mass drift velocity. | 
| 166 | Vector3d vdrift = info_->getComVel(); | 
| 167 |  | 
| 168 | SimInfo::MoleculeIterator i; | 
| 169 | Molecule::IntegrableObjectIterator j; | 
| 170 | Molecule * mol; | 
| 171 | StuntDouble * integrableObject; | 
| 172 |  | 
| 173 | //  Corrects for the center of mass drift. | 
| 174 | // sums all the momentum and divides by total mass. | 
| 175 | for( mol = info_->beginMolecule(i); mol != NULL; | 
| 176 | mol = info_->nextMolecule(i) ) { | 
| 177 | for( integrableObject = mol->beginIntegrableObject(j); | 
| 178 | integrableObject != NULL; | 
| 179 | integrableObject = mol->nextIntegrableObject(j) ) { | 
| 180 | integrableObject->setVel(integrableObject->getVel() - vdrift); | 
| 181 | } | 
| 182 | } | 
| 183 |  | 
| 184 | } | 
| 185 |  | 
| 186 |  | 
| 187 | void Velocitizer::removeAngularDrift() { | 
| 188 | // Get the Center of Mass drift velocity. | 
| 189 |  | 
| 190 | Vector3d vdrift; | 
| 191 | Vector3d com; | 
| 192 |  | 
| 193 | info_->getComAll(com,vdrift); | 
| 194 |  | 
| 195 | Mat3x3d inertiaTensor; | 
| 196 | Vector3d angularMomentum; | 
| 197 | Vector3d omega; | 
| 198 |  | 
| 199 |  | 
| 200 |  | 
| 201 | info_->getInertiaTensor(inertiaTensor,angularMomentum); | 
| 202 | // We now need the inverse of the inertia tensor. | 
| 203 | /* | 
| 204 | std::cerr << "Angular Momentum before is " | 
| 205 | << angularMomentum <<  std::endl; | 
| 206 | std::cerr << "Inertia Tensor before is " | 
| 207 | << inertiaTensor <<  std::endl; | 
| 208 | */ | 
| 209 | inertiaTensor =inertiaTensor.inverse(); | 
| 210 | /* | 
| 211 | std::cerr << "Inertia Tensor after inverse is " | 
| 212 | << inertiaTensor <<  std::endl; | 
| 213 | */ | 
| 214 | omega = inertiaTensor*angularMomentum; | 
| 215 |  | 
| 216 | SimInfo::MoleculeIterator i; | 
| 217 | Molecule::IntegrableObjectIterator j; | 
| 218 | Molecule * mol; | 
| 219 | StuntDouble * integrableObject; | 
| 220 | Vector3d tempComPos; | 
| 221 |  | 
| 222 | //  Corrects for the center of mass angular drift. | 
| 223 | // sums all the angular momentum and divides by total mass. | 
| 224 | for( mol = info_->beginMolecule(i); mol != NULL; | 
| 225 | mol = info_->nextMolecule(i) ) { | 
| 226 | for( integrableObject = mol->beginIntegrableObject(j); | 
| 227 | integrableObject != NULL; | 
| 228 | integrableObject = mol->nextIntegrableObject(j) ) { | 
| 229 | tempComPos = integrableObject->getPos()-com; | 
| 230 | integrableObject->setVel((integrableObject->getVel() - vdrift)-cross(omega,tempComPos)); | 
| 231 | } | 
| 232 | } | 
| 233 |  | 
| 234 | angularMomentum = info_->getAngularMomentum(); | 
| 235 | /* | 
| 236 | std::cerr << "Angular Momentum after is " | 
| 237 | << angularMomentum <<  std::endl; | 
| 238 | */ | 
| 239 | } | 
| 240 |  | 
| 241 |  | 
| 242 |  | 
| 243 |  | 
| 244 | } |