| 1 |
< |
/* |
| 1 |
> |
/* |
| 2 |
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
|
* |
| 4 |
|
* The University of Notre Dame grants you ("Licensee") a |
| 38 |
|
* University of Notre Dame has been advised of the possibility of |
| 39 |
|
* such damages. |
| 40 |
|
*/ |
| 41 |
< |
|
| 41 |
> |
|
| 42 |
|
#include "integrators/Velocitizer.hpp" |
| 43 |
|
#include "math/SquareMatrix3.hpp" |
| 44 |
|
#include "primitives/Molecule.hpp" |
| 45 |
|
#include "primitives/StuntDouble.hpp" |
| 46 |
– |
#include "math/MersenneTwister.hpp" |
| 47 |
– |
namespace oopse { |
| 46 |
|
|
| 47 |
< |
void Velocitizer::velocitize(double temperature) { |
| 47 |
> |
#ifndef IS_MPI |
| 48 |
> |
#include "math/SeqRandNumGen.hpp" |
| 49 |
> |
#else |
| 50 |
> |
#include "math/ParallelRandNumGen.hpp" |
| 51 |
> |
#endif |
| 52 |
> |
|
| 53 |
> |
namespace oopse { |
| 54 |
> |
|
| 55 |
> |
Velocitizer::Velocitizer(SimInfo* info) : info_(info) { |
| 56 |
> |
|
| 57 |
> |
int seedValue; |
| 58 |
> |
Globals * simParams = info->getSimParams(); |
| 59 |
> |
|
| 60 |
> |
#ifndef IS_MPI |
| 61 |
> |
if (simParams->haveSeed()) { |
| 62 |
> |
seedValue = simParams->getSeed(); |
| 63 |
> |
randNumGen_ = new SeqRandNumGen(seedValue); |
| 64 |
> |
}else { |
| 65 |
> |
randNumGen_ = new SeqRandNumGen(); |
| 66 |
> |
} |
| 67 |
> |
#else |
| 68 |
> |
if (simParams->haveSeed()) { |
| 69 |
> |
seedValue = simParams->getSeed(); |
| 70 |
> |
randNumGen_ = new ParallelRandNumGen(seedValue); |
| 71 |
> |
}else { |
| 72 |
> |
randNumGen_ = new ParallelRandNumGen(); |
| 73 |
> |
} |
| 74 |
> |
#endif |
| 75 |
> |
} |
| 76 |
> |
|
| 77 |
> |
Velocitizer::~Velocitizer() { |
| 78 |
> |
delete randNumGen_; |
| 79 |
> |
} |
| 80 |
> |
|
| 81 |
> |
void Velocitizer::velocitize(double temperature) { |
| 82 |
|
Vector3d aVel; |
| 83 |
|
Vector3d aJ; |
| 84 |
|
Mat3x3d I; |
| 91 |
|
const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. |
| 92 |
|
double av2; |
| 93 |
|
double kebar; |
| 94 |
< |
|
| 94 |
> |
|
| 95 |
|
SimInfo::MoleculeIterator i; |
| 96 |
|
Molecule::IntegrableObjectIterator j; |
| 97 |
|
Molecule * mol; |
| 98 |
|
StuntDouble * integrableObject; |
| 67 |
– |
|
| 99 |
|
|
| 100 |
< |
#ifndef IS_MPI |
| 101 |
< |
MTRand randNumGen(info_->getSeed()); |
| 71 |
< |
#else |
| 72 |
< |
int nProcessors; |
| 73 |
< |
MPI_Comm_size(MPI_COMM_WORLD, &nProcessors); |
| 74 |
< |
MTRand randNumGen(info_->getSeed(), nProcessors, worldRank); |
| 75 |
< |
#endif |
| 76 |
< |
|
| 100 |
> |
|
| 101 |
> |
|
| 102 |
|
kebar = kb * temperature * info_->getNdfRaw() / (2.0 * info_->getNdf()); |
| 103 |
< |
|
| 103 |
> |
|
| 104 |
|
for( mol = info_->beginMolecule(i); mol != NULL; |
| 105 |
< |
mol = info_->nextMolecule(i) ) { |
| 106 |
< |
for( integrableObject = mol->beginIntegrableObject(j); |
| 107 |
< |
integrableObject != NULL; |
| 108 |
< |
integrableObject = mol->nextIntegrableObject(j) ) { |
| 109 |
< |
|
| 110 |
< |
// uses equipartition theory to solve for vbar in angstrom/fs |
| 111 |
< |
|
| 112 |
< |
av2 = 2.0 * kebar / integrableObject->getMass(); |
| 113 |
< |
vbar = sqrt(av2); |
| 114 |
< |
|
| 115 |
< |
// picks random velocities from a gaussian distribution |
| 116 |
< |
// centered on vbar |
| 117 |
< |
|
| 118 |
< |
for( int k = 0; k < 3; k++ ) { |
| 119 |
< |
aVel[k] = vbar * randNumGen.randNorm(0.0, 1.0); |
| 120 |
< |
} |
| 121 |
< |
|
| 122 |
< |
integrableObject->setVel(aVel); |
| 123 |
< |
|
| 124 |
< |
if (integrableObject->isDirectional()) { |
| 125 |
< |
I = integrableObject->getI(); |
| 126 |
< |
|
| 127 |
< |
if (integrableObject->isLinear()) { |
| 128 |
< |
l = integrableObject->linearAxis(); |
| 129 |
< |
m = (l + 1) % 3; |
| 130 |
< |
n = (l + 2) % 3; |
| 131 |
< |
|
| 132 |
< |
aJ[l] = 0.0; |
| 133 |
< |
vbar = sqrt(2.0 * kebar * I(m, m)); |
| 134 |
< |
aJ[m] = vbar * randNumGen.randNorm(0.0, 1.0); |
| 135 |
< |
vbar = sqrt(2.0 * kebar * I(n, n)); |
| 136 |
< |
aJ[n] = vbar * randNumGen.randNorm(0.0, 1.0); |
| 137 |
< |
} else { |
| 138 |
< |
for( int k = 0; k < 3; k++ ) { |
| 139 |
< |
vbar = sqrt(2.0 * kebar * I(k, k)); |
| 140 |
< |
aJ[k] = vbar * randNumGen.randNorm(0.0, 1.0); |
| 141 |
< |
} |
| 142 |
< |
} // else isLinear |
| 143 |
< |
|
| 144 |
< |
integrableObject->setJ(aJ); |
| 145 |
< |
} //isDirectional |
| 146 |
< |
} |
| 105 |
> |
mol = info_->nextMolecule(i) ) { |
| 106 |
> |
for( integrableObject = mol->beginIntegrableObject(j); |
| 107 |
> |
integrableObject != NULL; |
| 108 |
> |
integrableObject = mol->nextIntegrableObject(j) ) { |
| 109 |
> |
|
| 110 |
> |
// uses equipartition theory to solve for vbar in angstrom/fs |
| 111 |
> |
|
| 112 |
> |
av2 = 2.0 * kebar / integrableObject->getMass(); |
| 113 |
> |
vbar = sqrt(av2); |
| 114 |
> |
|
| 115 |
> |
// picks random velocities from a gaussian distribution |
| 116 |
> |
// centered on vbar |
| 117 |
> |
|
| 118 |
> |
for( int k = 0; k < 3; k++ ) { |
| 119 |
> |
aVel[k] = vbar * randNumGen_->randNorm(0.0, 1.0); |
| 120 |
> |
} |
| 121 |
> |
|
| 122 |
> |
integrableObject->setVel(aVel); |
| 123 |
> |
|
| 124 |
> |
if (integrableObject->isDirectional()) { |
| 125 |
> |
I = integrableObject->getI(); |
| 126 |
> |
|
| 127 |
> |
if (integrableObject->isLinear()) { |
| 128 |
> |
l = integrableObject->linearAxis(); |
| 129 |
> |
m = (l + 1) % 3; |
| 130 |
> |
n = (l + 2) % 3; |
| 131 |
> |
|
| 132 |
> |
aJ[l] = 0.0; |
| 133 |
> |
vbar = sqrt(2.0 * kebar * I(m, m)); |
| 134 |
> |
aJ[m] = vbar * randNumGen_->randNorm(0.0, 1.0); |
| 135 |
> |
vbar = sqrt(2.0 * kebar * I(n, n)); |
| 136 |
> |
aJ[n] = vbar * randNumGen_->randNorm(0.0, 1.0); |
| 137 |
> |
} else { |
| 138 |
> |
for( int k = 0; k < 3; k++ ) { |
| 139 |
> |
vbar = sqrt(2.0 * kebar * I(k, k)); |
| 140 |
> |
aJ[k] = vbar *randNumGen_->randNorm(0.0, 1.0); |
| 141 |
> |
} |
| 142 |
> |
} // else isLinear |
| 143 |
> |
|
| 144 |
> |
integrableObject->setJ(aJ); |
| 145 |
> |
} //isDirectional |
| 146 |
> |
} |
| 147 |
|
} //end for (mol = beginMolecule(i); ...) |
| 148 |
< |
|
| 149 |
< |
|
| 150 |
< |
|
| 148 |
> |
|
| 149 |
> |
|
| 150 |
> |
|
| 151 |
|
removeComDrift(); |
| 152 |
< |
|
| 153 |
< |
} |
| 154 |
< |
|
| 155 |
< |
|
| 156 |
< |
|
| 157 |
< |
void Velocitizer::removeComDrift() { |
| 152 |
> |
|
| 153 |
> |
} |
| 154 |
> |
|
| 155 |
> |
|
| 156 |
> |
|
| 157 |
> |
void Velocitizer::removeComDrift() { |
| 158 |
|
// Get the Center of Mass drift velocity. |
| 159 |
|
Vector3d vdrift = info_->getComVel(); |
| 160 |
|
|
| 166 |
|
// Corrects for the center of mass drift. |
| 167 |
|
// sums all the momentum and divides by total mass. |
| 168 |
|
for( mol = info_->beginMolecule(i); mol != NULL; |
| 169 |
< |
mol = info_->nextMolecule(i) ) { |
| 170 |
< |
for( integrableObject = mol->beginIntegrableObject(j); |
| 171 |
< |
integrableObject != NULL; |
| 172 |
< |
integrableObject = mol->nextIntegrableObject(j) ) { |
| 173 |
< |
integrableObject->setVel(integrableObject->getVel() - vdrift); |
| 174 |
< |
} |
| 169 |
> |
mol = info_->nextMolecule(i) ) { |
| 170 |
> |
for( integrableObject = mol->beginIntegrableObject(j); |
| 171 |
> |
integrableObject != NULL; |
| 172 |
> |
integrableObject = mol->nextIntegrableObject(j) ) { |
| 173 |
> |
integrableObject->setVel(integrableObject->getVel() - vdrift); |
| 174 |
> |
} |
| 175 |
|
} |
| 176 |
< |
|
| 176 |
> |
|
| 177 |
> |
} |
| 178 |
> |
|
| 179 |
|
} |
| 153 |
– |
|
| 154 |
– |
} |