| 1 | < | #define _LARGEFILE_SOURCE64 | 
| 2 | < | #define _FILE_OFFSET_BITS 64 | 
| 1 | > | /* | 
| 2 | > | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | > | * | 
| 4 | > | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | > | * non-exclusive, royalty free, license to use, modify and | 
| 6 | > | * redistribute this software in source and binary code form, provided | 
| 7 | > | * that the following conditions are met: | 
| 8 | > | * | 
| 9 | > | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | > | *    publication of scientific results based in part on use of the | 
| 11 | > | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | > | *    the article in which the program was described (Matthew | 
| 13 | > | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | > | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | > | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | > | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | > | * | 
| 18 | > | * 2. Redistributions of source code must retain the above copyright | 
| 19 | > | *    notice, this list of conditions and the following disclaimer. | 
| 20 | > | * | 
| 21 | > | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | > | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | > | *    documentation and/or other materials provided with the | 
| 24 | > | *    distribution. | 
| 25 | > | * | 
| 26 | > | * This software is provided "AS IS," without a warranty of any | 
| 27 | > | * kind. All express or implied conditions, representations and | 
| 28 | > | * warranties, including any implied warranty of merchantability, | 
| 29 | > | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | > | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | > | * be liable for any damages suffered by licensee as a result of | 
| 32 | > | * using, modifying or distributing the software or its | 
| 33 | > | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | > | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | > | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | > | * damages, however caused and regardless of the theory of liability, | 
| 37 | > | * arising out of the use of or inability to use software, even if the | 
| 38 | > | * University of Notre Dame has been advised of the possibility of | 
| 39 | > | * such damages. | 
| 40 | > | */ | 
| 41 | > |  | 
| 42 | > | #include "io/DumpWriter.hpp" | 
| 43 | > | #include "primitives/Molecule.hpp" | 
| 44 | > | #include "utils/simError.h" | 
| 45 |  |  | 
| 4 | – | #include <string.h> | 
| 5 | – | #include <iostream> | 
| 6 | – | #include <fstream> | 
| 7 | – | #include <algorithm> | 
| 8 | – | #include <utility> | 
| 9 | – |  | 
| 46 |  | #ifdef IS_MPI | 
| 47 |  | #include <mpi.h> | 
| 12 | – | #include "brains/mpiSimulation.hpp" | 
| 13 | – |  | 
| 14 | – | namespace dWrite{ | 
| 15 | – | void DieDieDie( void ); | 
| 16 | – | } | 
| 17 | – |  | 
| 18 | – | using namespace dWrite; | 
| 48 |  | #endif //is_mpi | 
| 49 |  |  | 
| 50 | < | #include "io/ReadWrite.hpp" | 
| 22 | < | #include "utils/simError.h" | 
| 50 | > | namespace oopse { | 
| 51 |  |  | 
| 52 | < | DumpWriter::DumpWriter( SimInfo* the_entry_plug ){ | 
| 53 | < |  | 
| 26 | < | entry_plug = the_entry_plug; | 
| 27 | < |  | 
| 52 | > | DumpWriter::DumpWriter(SimInfo* info, const std::string& filename) | 
| 53 | > | : info_(info), filename_(filename){ | 
| 54 |  | #ifdef IS_MPI | 
| 55 | < | if(worldRank == 0 ){ | 
| 55 | > |  | 
| 56 | > | if (worldRank == 0) { | 
| 57 |  | #endif // is_mpi | 
| 58 |  |  | 
| 59 | < | dumpFile.open(entry_plug->sampleName.c_str(), ios::out | ios::trunc ); | 
| 59 | > | dumpFile_.open(filename_.c_str(), std::ios::out | std::ios::trunc); | 
| 60 |  |  | 
| 61 | < | if( !dumpFile ){ | 
| 61 | > | if (!dumpFile_) { | 
| 62 | > | sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n", | 
| 63 | > | filename_.c_str()); | 
| 64 | > | painCave.isFatal = 1; | 
| 65 | > | simError(); | 
| 66 | > | } | 
| 67 |  |  | 
| 68 | < | sprintf( painCave.errMsg, | 
| 69 | < | "Could not open \"%s\" for dump output.\n", | 
| 38 | < | entry_plug->sampleName.c_str()); | 
| 39 | < | painCave.isFatal = 1; | 
| 40 | < | simError(); | 
| 68 | > | #ifdef IS_MPI | 
| 69 | > |  | 
| 70 |  | } | 
| 71 |  |  | 
| 72 | < | #ifdef IS_MPI | 
| 73 | < | } | 
| 72 | > | sprintf(checkPointMsg, "Sucessfully opened output file for dumping.\n"); | 
| 73 | > | MPIcheckPoint(); | 
| 74 |  |  | 
| 46 | – | //sort the local atoms by global index | 
| 47 | – | sortByGlobalIndex(); | 
| 48 | – |  | 
| 49 | – | sprintf( checkPointMsg, | 
| 50 | – | "Sucessfully opened output file for dumping.\n"); | 
| 51 | – | MPIcheckPoint(); | 
| 75 |  | #endif // is_mpi | 
| 76 | + |  | 
| 77 |  | } | 
| 78 |  |  | 
| 79 | < | DumpWriter::~DumpWriter( ){ | 
| 79 | > | DumpWriter::~DumpWriter() { | 
| 80 |  |  | 
| 81 |  | #ifdef IS_MPI | 
| 82 | < | if(worldRank == 0 ){ | 
| 82 | > |  | 
| 83 | > | if (worldRank == 0) { | 
| 84 |  | #endif // is_mpi | 
| 85 |  |  | 
| 86 | < | dumpFile.close(); | 
| 86 | > | dumpFile_.close(); | 
| 87 |  |  | 
| 88 |  | #ifdef IS_MPI | 
| 89 | < | } | 
| 89 | > |  | 
| 90 | > | } | 
| 91 | > |  | 
| 92 |  | #endif // is_mpi | 
| 93 | + |  | 
| 94 |  | } | 
| 95 |  |  | 
| 96 | < | #ifdef IS_MPI | 
| 96 | > | void DumpWriter::writeCommentLine(std::ostream& os, Snapshot* s) { | 
| 97 |  |  | 
| 98 | < | /** | 
| 99 | < | * A hook function to load balancing | 
| 100 | < | */ | 
| 98 | > | double currentTime; | 
| 99 | > | Mat3x3d hmat; | 
| 100 | > | double chi; | 
| 101 | > | double integralOfChiDt; | 
| 102 | > | Mat3x3d eta; | 
| 103 | > |  | 
| 104 | > | currentTime = s->getTime(); | 
| 105 | > | hmat = s->getHmat(); | 
| 106 | > | chi = s->getChi(); | 
| 107 | > | integralOfChiDt = s->getIntegralOfChiDt(); | 
| 108 | > | eta = s->getEta(); | 
| 109 | > |  | 
| 110 | > | os << currentTime << ";\t" | 
| 111 | > | << hmat(0, 0) << "\t" << hmat(1, 0) << "\t" << hmat(2, 0) << ";\t" | 
| 112 | > | << hmat(0, 1) << "\t" << hmat(1, 1) << "\t" << hmat(2, 1) << ";\t" | 
| 113 | > | << hmat(0, 2) << "\t" << hmat(1, 2) << "\t" << hmat(2, 2) << ";\t"; | 
| 114 |  |  | 
| 115 | < | void DumpWriter::update(){ | 
| 75 | < | sortByGlobalIndex(); | 
| 76 | < | } | 
| 77 | < |  | 
| 78 | < | /** | 
| 79 | < | * Auxiliary sorting function | 
| 80 | < | */ | 
| 81 | < |  | 
| 82 | < | bool indexSortingCriterion(const pair<int, int>& p1, const pair<int, int>& p2){ | 
| 83 | < | return p1.second < p2.second; | 
| 84 | < | } | 
| 115 | > | //write out additional parameters, such as chi and eta | 
| 116 |  |  | 
| 117 | < | /** | 
| 118 | < | * Sorting the local index by global index | 
| 119 | < | */ | 
| 120 | < |  | 
| 121 | < | void DumpWriter::sortByGlobalIndex(){ | 
| 122 | < | Molecule* mols = entry_plug->molecules; | 
| 123 | < | indexArray.clear(); | 
| 93 | < |  | 
| 94 | < | for(int i = 0; i < entry_plug->n_mol;i++) | 
| 95 | < | indexArray.push_back(make_pair(i, mols[i].getGlobalIndex())); | 
| 96 | < |  | 
| 97 | < | sort(indexArray.begin(), indexArray.end(), indexSortingCriterion); | 
| 117 | > | os << chi << "\t" << integralOfChiDt << "\t;"; | 
| 118 | > |  | 
| 119 | > | os << eta(0, 0) << "\t" << eta(1, 0) << "\t" << eta(2, 0) << ";\t" | 
| 120 | > | << eta(0, 1) << "\t" << eta(1, 1) << "\t" << eta(2, 1) << ";\t" | 
| 121 | > | << eta(0, 2) << "\t" << eta(1, 2) << "\t" << eta(2, 2) << ";"; | 
| 122 | > |  | 
| 123 | > | os << std::endl; | 
| 124 |  | } | 
| 125 |  |  | 
| 126 | < | #endif | 
| 126 | > | void DumpWriter::writeFrame(std::ostream& os) { | 
| 127 | > | const int BUFFERSIZE = 2000; | 
| 128 | > | const int MINIBUFFERSIZE = 100; | 
| 129 |  |  | 
| 130 | < | void DumpWriter::writeDump(double currentTime){ | 
| 130 | > | char tempBuffer[BUFFERSIZE]; | 
| 131 | > | char writeLine[BUFFERSIZE]; | 
| 132 |  |  | 
| 133 | < | ofstream finalOut; | 
| 134 | < | vector<ofstream*> fileStreams; | 
| 133 | > | Quat4d q; | 
| 134 | > | Vector3d ji; | 
| 135 | > | Vector3d pos; | 
| 136 | > | Vector3d vel; | 
| 137 |  |  | 
| 138 | < | #ifdef IS_MPI | 
| 139 | < | if(worldRank == 0 ){ | 
| 140 | < | #endif | 
| 141 | < | finalOut.open( entry_plug->finalName.c_str(), ios::out | ios::trunc ); | 
| 142 | < | if( !finalOut ){ | 
| 143 | < | sprintf( painCave.errMsg, | 
| 144 | < | "Could not open \"%s\" for final dump output.\n", | 
| 114 | < | entry_plug->finalName.c_str() ); | 
| 115 | < | painCave.isFatal = 1; | 
| 116 | < | simError(); | 
| 117 | < | } | 
| 118 | < | #ifdef IS_MPI | 
| 119 | < | } | 
| 120 | < | #endif // is_mpi | 
| 138 | > | Molecule* mol; | 
| 139 | > | StuntDouble* integrableObject; | 
| 140 | > | SimInfo::MoleculeIterator mi; | 
| 141 | > | Molecule::IntegrableObjectIterator ii; | 
| 142 | > |  | 
| 143 | > | int nTotObjects; | 
| 144 | > | nTotObjects = info_->getNGlobalIntegrableObjects(); | 
| 145 |  |  | 
| 146 | < | fileStreams.push_back(&finalOut); | 
| 123 | < | fileStreams.push_back(&dumpFile); | 
| 146 | > | #ifndef IS_MPI | 
| 147 |  |  | 
| 125 | – | writeFrame(fileStreams, currentTime); | 
| 148 |  |  | 
| 149 | < | #ifdef IS_MPI | 
| 150 | < | finalOut.close(); | 
| 151 | < | #endif | 
| 130 | < |  | 
| 131 | < | } | 
| 149 | > | os << nTotObjects << "\n"; | 
| 150 | > |  | 
| 151 | > | writeCommentLine(os, info_->getSnapshotManager()->getCurrentSnapshot()); | 
| 152 |  |  | 
| 153 | < | void DumpWriter::writeFinal(double currentTime){ | 
| 153 | > | for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { | 
| 154 |  |  | 
| 155 | < | ofstream finalOut; | 
| 156 | < | vector<ofstream*> fileStreams; | 
| 155 | > | for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; | 
| 156 | > | integrableObject = mol->nextIntegrableObject(ii)) { | 
| 157 | > |  | 
| 158 |  |  | 
| 159 | < | #ifdef IS_MPI | 
| 160 | < | if(worldRank == 0 ){ | 
| 140 | < | #endif // is_mpi | 
| 159 | > | pos = integrableObject->getPos(); | 
| 160 | > | vel = integrableObject->getVel(); | 
| 161 |  |  | 
| 162 | < | finalOut.open( entry_plug->finalName.c_str(), ios::out | ios::trunc ); | 
| 162 | > | sprintf(tempBuffer, "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t", | 
| 163 | > | integrableObject->getType().c_str(), | 
| 164 | > | pos[0], pos[1], pos[2], | 
| 165 | > | vel[0], vel[1], vel[2]); | 
| 166 |  |  | 
| 167 | < | if( !finalOut ){ | 
| 145 | < | sprintf( painCave.errMsg, | 
| 146 | < | "Could not open \"%s\" for final dump output.\n", | 
| 147 | < | entry_plug->finalName.c_str() ); | 
| 148 | < | painCave.isFatal = 1; | 
| 149 | < | simError(); | 
| 150 | < | } | 
| 167 | > | strcpy(writeLine, tempBuffer); | 
| 168 |  |  | 
| 169 | < | #ifdef IS_MPI | 
| 170 | < | } | 
| 171 | < | #endif // is_mpi | 
| 155 | < |  | 
| 156 | < | fileStreams.push_back(&finalOut); | 
| 157 | < | writeFrame(fileStreams, currentTime); | 
| 169 | > | if (integrableObject->isDirectional()) { | 
| 170 | > | q = integrableObject->getQ(); | 
| 171 | > | ji = integrableObject->getJ(); | 
| 172 |  |  | 
| 173 | < | #ifdef IS_MPI | 
| 174 | < | finalOut.close(); | 
| 175 | < | #endif | 
| 176 | < |  | 
| 177 | < | } | 
| 173 | > | sprintf(tempBuffer, "%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n", | 
| 174 | > | q[0], q[1], q[2], q[3], | 
| 175 | > | ji[0], ji[1], ji[2]); | 
| 176 | > | strcat(writeLine, tempBuffer); | 
| 177 | > | } else { | 
| 178 | > | strcat(writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n"); | 
| 179 | > | } | 
| 180 |  |  | 
| 181 | < | void DumpWriter::writeFrame( vector<ofstream*>& outFile, double currentTime ){ | 
| 181 | > | os << writeLine; | 
| 182 |  |  | 
| 183 | < | const int BUFFERSIZE = 2000; | 
| 184 | < | const int MINIBUFFERSIZE = 100; | 
| 183 | > | } | 
| 184 | > | } | 
| 185 |  |  | 
| 186 | < | char tempBuffer[BUFFERSIZE]; | 
| 187 | < | char writeLine[BUFFERSIZE]; | 
| 188 | < |  | 
| 189 | < | int i; | 
| 190 | < | unsigned int k; | 
| 186 | > | os.flush(); | 
| 187 | > | #else // is_mpi | 
| 188 | > | /********************************************************************* | 
| 189 | > | * Documentation?  You want DOCUMENTATION? | 
| 190 | > | * | 
| 191 | > | * Why all the potatoes below? | 
| 192 | > | * | 
| 193 | > | * To make a long story short, the original version of DumpWriter | 
| 194 | > | * worked in the most inefficient way possible.  Node 0 would | 
| 195 | > | * poke each of the node for an individual atom's formatted data | 
| 196 | > | * as node 0 worked its way down the global index. This was particularly | 
| 197 | > | * inefficient since the method blocked all processors at every atom | 
| 198 | > | * (and did it twice!). | 
| 199 | > | * | 
| 200 | > | * An intermediate version of DumpWriter could be described from Node | 
| 201 | > | * zero's perspective as follows: | 
| 202 | > | * | 
| 203 | > | *  1) Have 100 of your friends stand in a circle. | 
| 204 | > | *  2) When you say go, have all of them start tossing potatoes at | 
| 205 | > | *     you (one at a time). | 
| 206 | > | *  3) Catch the potatoes. | 
| 207 | > | * | 
| 208 | > | * It was an improvement, but MPI has buffers and caches that could | 
| 209 | > | * best be described in this analogy as "potato nets", so there's no | 
| 210 | > | * need to block the processors atom-by-atom. | 
| 211 | > | * | 
| 212 | > | * This new and improved DumpWriter works in an even more efficient | 
| 213 | > | * way: | 
| 214 | > | * | 
| 215 | > | *  1) Have 100 of your friend stand in a circle. | 
| 216 | > | *  2) When you say go, have them start tossing 5-pound bags of | 
| 217 | > | *     potatoes at you. | 
| 218 | > | *  3) Once you've caught a friend's bag of potatoes, | 
| 219 | > | *     toss them a spud to let them know they can toss another bag. | 
| 220 | > | * | 
| 221 | > | * How's THAT for documentation? | 
| 222 | > | * | 
| 223 | > | *********************************************************************/ | 
| 224 | > | const int masterNode = 0; | 
| 225 |  |  | 
| 226 | < | #ifdef IS_MPI | 
| 227 | < |  | 
| 228 | < | /********************************************************************* | 
| 229 | < | * Documentation?  You want DOCUMENTATION? | 
| 230 | < | * | 
| 231 | < | * Why all the potatoes below? | 
| 232 | < | * | 
| 233 | < | * To make a long story short, the original version of DumpWriter | 
| 234 | < | * worked in the most inefficient way possible.  Node 0 would | 
| 235 | < | * poke each of the node for an individual atom's formatted data | 
| 236 | < | * as node 0 worked its way down the global index. This was particularly | 
| 237 | < | * inefficient since the method blocked all processors at every atom | 
| 238 | < | * (and did it twice!). | 
| 239 | < | * | 
| 240 | < | * An intermediate version of DumpWriter could be described from Node | 
| 241 | < | * zero's perspective as follows: | 
| 242 | < | * | 
| 243 | < | *  1) Have 100 of your friends stand in a circle. | 
| 194 | < | *  2) When you say go, have all of them start tossing potatoes at | 
| 195 | < | *     you (one at a time). | 
| 196 | < | *  3) Catch the potatoes. | 
| 197 | < | * | 
| 198 | < | * It was an improvement, but MPI has buffers and caches that could | 
| 199 | < | * best be described in this analogy as "potato nets", so there's no | 
| 200 | < | * need to block the processors atom-by-atom. | 
| 201 | < | * | 
| 202 | < | * This new and improved DumpWriter works in an even more efficient | 
| 203 | < | * way: | 
| 204 | < | * | 
| 205 | < | *  1) Have 100 of your friend stand in a circle. | 
| 206 | < | *  2) When you say go, have them start tossing 5-pound bags of | 
| 207 | < | *     potatoes at you. | 
| 208 | < | *  3) Once you've caught a friend's bag of potatoes, | 
| 209 | < | *     toss them a spud to let them know they can toss another bag. | 
| 210 | < | * | 
| 211 | < | * How's THAT for documentation? | 
| 212 | < | * | 
| 213 | < | *********************************************************************/ | 
| 226 | > | int * potatoes; | 
| 227 | > | int myPotato; | 
| 228 | > | int nProc; | 
| 229 | > | int which_node; | 
| 230 | > | double atomData[13]; | 
| 231 | > | int isDirectional; | 
| 232 | > | const char * atomTypeString; | 
| 233 | > | char MPIatomTypeString[MINIBUFFERSIZE]; | 
| 234 | > | int msgLen; // the length of message actually recieved at master nodes | 
| 235 | > | int haveError; | 
| 236 | > | MPI_Status istatus; | 
| 237 | > | int nCurObj; | 
| 238 | > |  | 
| 239 | > | // code to find maximum tag value | 
| 240 | > | int * tagub; | 
| 241 | > | int flag; | 
| 242 | > | int MAXTAG; | 
| 243 | > | MPI_Attr_get(MPI_COMM_WORLD, MPI_TAG_UB, &tagub, &flag); | 
| 244 |  |  | 
| 245 | < | int *potatoes; | 
| 246 | < | int myPotato; | 
| 245 | > | if (flag) { | 
| 246 | > | MAXTAG = *tagub; | 
| 247 | > | } else { | 
| 248 | > | MAXTAG = 32767; | 
| 249 | > | } | 
| 250 |  |  | 
| 251 | < | int nProc; | 
| 219 | < | int j, which_node, done, which_atom, local_index, currentIndex; | 
| 220 | < | double atomData[13]; | 
| 221 | < | int isDirectional; | 
| 222 | < | char* atomTypeString; | 
| 223 | < | char MPIatomTypeString[MINIBUFFERSIZE]; | 
| 224 | < | int nObjects; | 
| 225 | < | int msgLen; // the length of message actually recieved at master nodes | 
| 226 | < | #endif //is_mpi | 
| 251 | > | if (worldRank == masterNode) { //master node (node 0) is responsible for writing the dump file | 
| 252 |  |  | 
| 253 | < | double q[4], ji[3]; | 
| 229 | < | DirectionalAtom* dAtom; | 
| 230 | < | double pos[3], vel[3]; | 
| 231 | < | int nTotObjects; | 
| 232 | < | StuntDouble* sd; | 
| 233 | < | char* molName; | 
| 234 | < | vector<StuntDouble*> integrableObjects; | 
| 235 | < | vector<StuntDouble*>::iterator iter; | 
| 236 | < | nTotObjects = entry_plug->getTotIntegrableObjects(); | 
| 237 | < | #ifndef IS_MPI | 
| 238 | < |  | 
| 239 | < | for(k = 0; k < outFile.size(); k++){ | 
| 240 | < | *outFile[k] << nTotObjects << "\n"; | 
| 253 | > | // Node 0 needs a list of the magic potatoes for each processor; | 
| 254 |  |  | 
| 255 | < | *outFile[k] << currentTime << ";\t" | 
| 256 | < | << entry_plug->Hmat[0][0] << "\t" | 
| 244 | < | << entry_plug->Hmat[1][0] << "\t" | 
| 245 | < | << entry_plug->Hmat[2][0] << ";\t" | 
| 246 | < |  | 
| 247 | < | << entry_plug->Hmat[0][1] << "\t" | 
| 248 | < | << entry_plug->Hmat[1][1] << "\t" | 
| 249 | < | << entry_plug->Hmat[2][1] << ";\t" | 
| 255 | > | MPI_Comm_size(MPI_COMM_WORLD, &nProc); | 
| 256 | > | potatoes = new int[nProc]; | 
| 257 |  |  | 
| 258 | < | << entry_plug->Hmat[0][2] << "\t" | 
| 259 | < | << entry_plug->Hmat[1][2] << "\t" | 
| 260 | < | << entry_plug->Hmat[2][2] << ";"; | 
| 258 | > | //write out the comment lines | 
| 259 | > | for(int i = 0; i < nProc; i++) { | 
| 260 | > | potatoes[i] = 0; | 
| 261 | > | } | 
| 262 |  |  | 
| 255 | – | //write out additional parameters, such as chi and eta | 
| 256 | – | *outFile[k] << entry_plug->the_integrator->getAdditionalParameters() << endl; | 
| 257 | – | } | 
| 258 | – |  | 
| 259 | – | for( i=0; i< entry_plug->n_mol; i++ ){ | 
| 263 |  |  | 
| 264 | < | integrableObjects = entry_plug->molecules[i].getIntegrableObjects(); | 
| 265 | < | molName = (entry_plug->compStamps[entry_plug->molecules[i].getStampID()])->getID(); | 
| 263 | < |  | 
| 264 | < | for( iter = integrableObjects.begin();iter !=  integrableObjects.end(); ++iter){ | 
| 265 | < | sd = *iter; | 
| 266 | < | sd->getPos(pos); | 
| 267 | < | sd->getVel(vel); | 
| 264 | > | os << nTotObjects << "\n"; | 
| 265 | > | writeCommentLine(os, info_->getSnapshotManager()->getCurrentSnapshot()); | 
| 266 |  |  | 
| 267 | < | sprintf( tempBuffer, | 
| 270 | < | "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t", | 
| 271 | < | sd->getType(), | 
| 272 | < | pos[0], | 
| 273 | < | pos[1], | 
| 274 | < | pos[2], | 
| 275 | < | vel[0], | 
| 276 | < | vel[1], | 
| 277 | < | vel[2]); | 
| 278 | < | strcpy( writeLine, tempBuffer ); | 
| 267 | > | for(int i = 0; i < info_->getNGlobalMolecules(); i++) { | 
| 268 |  |  | 
| 269 | < | if( sd->isDirectional() ){ | 
| 269 | > | // Get the Node number which has this atom; | 
| 270 |  |  | 
| 271 | < | sd->getQ( q ); | 
| 283 | < | sd->getJ( ji ); | 
| 271 | > | which_node = info_->getMolToProc(i); | 
| 272 |  |  | 
| 273 | < | sprintf( tempBuffer, | 
| 274 | < | "%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n", | 
| 275 | < | q[0], | 
| 276 | < | q[1], | 
| 289 | < | q[2], | 
| 290 | < | q[3], | 
| 291 | < | ji[0], | 
| 292 | < | ji[1], | 
| 293 | < | ji[2]); | 
| 294 | < | strcat( writeLine, tempBuffer ); | 
| 295 | < | } | 
| 296 | < | else | 
| 297 | < | strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" ); | 
| 298 | < |  | 
| 299 | < | for(k = 0; k < outFile.size(); k++) | 
| 300 | < | *outFile[k] << writeLine; | 
| 301 | < | } | 
| 302 | < |  | 
| 303 | < | } | 
| 273 | > | if (which_node != masterNode) { //current molecule is in slave node | 
| 274 | > | if (potatoes[which_node] + 1 >= MAXTAG) { | 
| 275 | > | // The potato was going to exceed the maximum value, | 
| 276 | > | // so wrap this processor potato back to 0: | 
| 277 |  |  | 
| 278 | < | #else // is_mpi | 
| 278 | > | potatoes[which_node] = 0; | 
| 279 | > | MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0, | 
| 280 | > | MPI_COMM_WORLD); | 
| 281 | > | } | 
| 282 |  |  | 
| 283 | < | /* code to find maximum tag value */ | 
| 308 | < |  | 
| 309 | < | int *tagub, flag, MAXTAG; | 
| 310 | < | MPI_Attr_get(MPI_COMM_WORLD, MPI_TAG_UB, &tagub, &flag); | 
| 311 | < | if (flag) { | 
| 312 | < | MAXTAG = *tagub; | 
| 313 | < | } else { | 
| 314 | < | MAXTAG = 32767; | 
| 315 | < | } | 
| 283 | > | myPotato = potatoes[which_node]; | 
| 284 |  |  | 
| 285 | < | int haveError; | 
| 285 | > | //recieve the number of integrableObject in current molecule | 
| 286 | > | MPI_Recv(&nCurObj, 1, MPI_INT, which_node, myPotato, | 
| 287 | > | MPI_COMM_WORLD, &istatus); | 
| 288 | > | myPotato++; | 
| 289 |  |  | 
| 290 | < | MPI_Status istatus; | 
| 291 | < | int nCurObj; | 
| 292 | < | int *MolToProcMap = mpiSim->getMolToProcMap(); | 
| 290 | > | for(int l = 0; l < nCurObj; l++) { | 
| 291 | > | if (potatoes[which_node] + 2 >= MAXTAG) { | 
| 292 | > | // The potato was going to exceed the maximum value, | 
| 293 | > | // so wrap this processor potato back to 0: | 
| 294 |  |  | 
| 295 | < | // write out header and node 0's coordinates | 
| 295 | > | potatoes[which_node] = 0; | 
| 296 | > | MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, | 
| 297 | > | 0, MPI_COMM_WORLD); | 
| 298 | > | } | 
| 299 |  |  | 
| 300 | < | if( worldRank == 0 ){ | 
| 300 | > | MPI_Recv(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, | 
| 301 | > | which_node, myPotato, MPI_COMM_WORLD, | 
| 302 | > | &istatus); | 
| 303 |  |  | 
| 304 | < | // Node 0 needs a list of the magic potatoes for each processor; | 
| 304 | > | atomTypeString = MPIatomTypeString; | 
| 305 |  |  | 
| 306 | < | nProc = mpiSim->getNProcessors(); | 
| 330 | < | potatoes = new int[nProc]; | 
| 306 | > | myPotato++; | 
| 307 |  |  | 
| 308 | < | //write out the comment lines | 
| 309 | < | for (i = 0; i < nProc; i++) | 
| 310 | < | potatoes[i] = 0; | 
| 335 | < |  | 
| 336 | < | for(k = 0; k < outFile.size(); k++){ | 
| 337 | < | *outFile[k] << nTotObjects << "\n"; | 
| 338 | < |  | 
| 339 | < | *outFile[k] << currentTime << ";\t" | 
| 340 | < | << entry_plug->Hmat[0][0] << "\t" | 
| 341 | < | << entry_plug->Hmat[1][0] << "\t" | 
| 342 | < | << entry_plug->Hmat[2][0] << ";\t" | 
| 343 | < |  | 
| 344 | < | << entry_plug->Hmat[0][1] << "\t" | 
| 345 | < | << entry_plug->Hmat[1][1] << "\t" | 
| 346 | < | << entry_plug->Hmat[2][1] << ";\t" | 
| 347 | < |  | 
| 348 | < | << entry_plug->Hmat[0][2] << "\t" | 
| 349 | < | << entry_plug->Hmat[1][2] << "\t" | 
| 350 | < | << entry_plug->Hmat[2][2] << ";"; | 
| 351 | < |  | 
| 352 | < | *outFile[k] << entry_plug->the_integrator->getAdditionalParameters() | 
| 353 | < | << endl; | 
| 354 | < | } | 
| 355 | < |  | 
| 356 | < | currentIndex = 0; | 
| 357 | < |  | 
| 358 | < | for (i = 0 ; i < mpiSim->getNMolGlobal(); i++ ) { | 
| 359 | < |  | 
| 360 | < | // Get the Node number which has this atom; | 
| 361 | < |  | 
| 362 | < | which_node = MolToProcMap[i]; | 
| 363 | < |  | 
| 364 | < | if (which_node != 0) { | 
| 365 | < |  | 
| 366 | < | if (potatoes[which_node] + 1 >= MAXTAG) { | 
| 367 | < | // The potato was going to exceed the maximum value, | 
| 368 | < | // so wrap this processor potato back to 0: | 
| 369 | < |  | 
| 370 | < | potatoes[which_node] = 0; | 
| 371 | < | MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0, | 
| 372 | < | MPI_COMM_WORLD); | 
| 373 | < |  | 
| 374 | < | } | 
| 375 | < |  | 
| 376 | < | myPotato = potatoes[which_node]; | 
| 377 | < |  | 
| 378 | < | //recieve the number of integrableObject in current molecule | 
| 379 | < | MPI_Recv(&nCurObj, 1, MPI_INT, which_node, | 
| 380 | < | myPotato, MPI_COMM_WORLD, &istatus); | 
| 381 | < | myPotato++; | 
| 382 | < |  | 
| 383 | < | for(int l = 0; l < nCurObj; l++){ | 
| 308 | > | MPI_Recv(atomData, 13, MPI_DOUBLE, which_node, myPotato, | 
| 309 | > | MPI_COMM_WORLD, &istatus); | 
| 310 | > | myPotato++; | 
| 311 |  |  | 
| 312 | < | if (potatoes[which_node] + 2 >= MAXTAG) { | 
| 386 | < | // The potato was going to exceed the maximum value, | 
| 387 | < | // so wrap this processor potato back to 0: | 
| 312 | > | MPI_Get_count(&istatus, MPI_DOUBLE, &msgLen); | 
| 313 |  |  | 
| 314 | < | potatoes[which_node] = 0; | 
| 315 | < | MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0, MPI_COMM_WORLD); | 
| 316 | < |  | 
| 317 | < | } | 
| 314 | > | if (msgLen == 13) | 
| 315 | > | isDirectional = 1; | 
| 316 | > | else | 
| 317 | > | isDirectional = 0; | 
| 318 |  |  | 
| 319 | < | MPI_Recv(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, which_node, | 
| 395 | < | myPotato, MPI_COMM_WORLD, &istatus); | 
| 319 | > | // If we've survived to here, format the line: | 
| 320 |  |  | 
| 321 | < | atomTypeString = MPIatomTypeString; | 
| 321 | > | if (!isDirectional) { | 
| 322 | > | sprintf(writeLine, "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t", | 
| 323 | > | atomTypeString, atomData[0], | 
| 324 | > | atomData[1], atomData[2], | 
| 325 | > | atomData[3], atomData[4], | 
| 326 | > | atomData[5]); | 
| 327 |  |  | 
| 328 | < | myPotato++; | 
| 328 | > | strcat(writeLine, | 
| 329 | > | "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n"); | 
| 330 | > | } else { | 
| 331 | > | sprintf(writeLine, | 
| 332 | > | "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n", | 
| 333 | > | atomTypeString, | 
| 334 | > | atomData[0], | 
| 335 | > | atomData[1], | 
| 336 | > | atomData[2], | 
| 337 | > | atomData[3], | 
| 338 | > | atomData[4], | 
| 339 | > | atomData[5], | 
| 340 | > | atomData[6], | 
| 341 | > | atomData[7], | 
| 342 | > | atomData[8], | 
| 343 | > | atomData[9], | 
| 344 | > | atomData[10], | 
| 345 | > | atomData[11], | 
| 346 | > | atomData[12]); | 
| 347 | > | } | 
| 348 |  |  | 
| 349 | < | MPI_Recv(atomData, 13, MPI_DOUBLE, which_node, myPotato, MPI_COMM_WORLD, &istatus); | 
| 402 | < | myPotato++; | 
| 349 | > | os << writeLine; | 
| 350 |  |  | 
| 351 | < | MPI_Get_count(&istatus, MPI_DOUBLE, &msgLen); | 
| 351 | > | } // end for(int l =0) | 
| 352 |  |  | 
| 353 | < | if(msgLen  == 13) | 
| 354 | < | isDirectional = 1; | 
| 408 | < | else | 
| 409 | < | isDirectional = 0; | 
| 410 | < |  | 
| 411 | < | // If we've survived to here, format the line: | 
| 412 | < |  | 
| 413 | < | if (!isDirectional) { | 
| 414 | < |  | 
| 415 | < | sprintf( writeLine, | 
| 416 | < | "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t", | 
| 417 | < | atomTypeString, | 
| 418 | < | atomData[0], | 
| 419 | < | atomData[1], | 
| 420 | < | atomData[2], | 
| 421 | < | atomData[3], | 
| 422 | < | atomData[4], | 
| 423 | < | atomData[5]); | 
| 424 | < |  | 
| 425 | < | strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" ); | 
| 426 | < |  | 
| 427 | < | } | 
| 428 | < | else { | 
| 429 | < |  | 
| 430 | < | sprintf( writeLine, | 
| 431 | < | "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n", | 
| 432 | < | atomTypeString, | 
| 433 | < | atomData[0], | 
| 434 | < | atomData[1], | 
| 435 | < | atomData[2], | 
| 436 | < | atomData[3], | 
| 437 | < | atomData[4], | 
| 438 | < | atomData[5], | 
| 439 | < | atomData[6], | 
| 440 | < | atomData[7], | 
| 441 | < | atomData[8], | 
| 442 | < | atomData[9], | 
| 443 | < | atomData[10], | 
| 444 | < | atomData[11], | 
| 445 | < | atomData[12]); | 
| 446 | < |  | 
| 447 | < | } | 
| 448 | < |  | 
| 449 | < | for(k = 0; k < outFile.size(); k++) | 
| 450 | < | *outFile[k] << writeLine; | 
| 353 | > | potatoes[which_node] = myPotato; | 
| 354 | > | } else { //master node has current molecule | 
| 355 |  |  | 
| 356 | < | }// end for(int l =0) | 
| 453 | < | potatoes[which_node] = myPotato; | 
| 454 | < |  | 
| 455 | < | } | 
| 456 | < | else { | 
| 457 | < |  | 
| 458 | < | haveError = 0; | 
| 459 | < |  | 
| 460 | < | local_index = indexArray[currentIndex].first; | 
| 461 | < |  | 
| 462 | < | integrableObjects = (entry_plug->molecules[local_index]).getIntegrableObjects(); | 
| 356 | > | mol = info_->getMoleculeByGlobalIndex(i); | 
| 357 |  |  | 
| 358 | < | for(iter= integrableObjects.begin(); iter != integrableObjects.end(); ++iter){ | 
| 359 | < | sd = *iter; | 
| 360 | < | atomTypeString = sd->getType(); | 
| 361 | < |  | 
| 362 | < | sd->getPos(pos); | 
| 469 | < | sd->getVel(vel); | 
| 470 | < |  | 
| 471 | < | atomData[0] = pos[0]; | 
| 472 | < | atomData[1] = pos[1]; | 
| 473 | < | atomData[2] = pos[2]; | 
| 474 | < |  | 
| 475 | < | atomData[3] = vel[0]; | 
| 476 | < | atomData[4] = vel[1]; | 
| 477 | < | atomData[5] = vel[2]; | 
| 478 | < |  | 
| 479 | < | isDirectional = 0; | 
| 480 | < |  | 
| 481 | < | if( sd->isDirectional() ){ | 
| 482 | < |  | 
| 483 | < | isDirectional = 1; | 
| 358 | > | if (mol == NULL) { | 
| 359 | > | sprintf(painCave.errMsg, "Molecule not found on node %d!", worldRank); | 
| 360 | > | painCave.isFatal = 1; | 
| 361 | > | simError(); | 
| 362 | > | } | 
| 363 |  |  | 
| 364 | < | sd->getQ( q ); | 
| 365 | < | sd->getJ( ji ); | 
| 364 | > | for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; | 
| 365 | > | integrableObject = mol->nextIntegrableObject(ii)) { | 
| 366 | > |  | 
| 367 | > | atomTypeString = integrableObject->getType().c_str(); | 
| 368 |  |  | 
| 369 | < | for (int j = 0; j < 6 ; j++) | 
| 370 | < | atomData[j] = atomData[j]; | 
| 490 | < |  | 
| 491 | < | atomData[6] = q[0]; | 
| 492 | < | atomData[7] = q[1]; | 
| 493 | < | atomData[8] = q[2]; | 
| 494 | < | atomData[9] = q[3]; | 
| 495 | < |  | 
| 496 | < | atomData[10] = ji[0]; | 
| 497 | < | atomData[11] = ji[1]; | 
| 498 | < | atomData[12] = ji[2]; | 
| 499 | < | } | 
| 500 | < |  | 
| 501 | < | // If we've survived to here, format the line: | 
| 502 | < |  | 
| 503 | < | if (!isDirectional) { | 
| 504 | < |  | 
| 505 | < | sprintf( writeLine, | 
| 506 | < | "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t", | 
| 507 | < | atomTypeString, | 
| 508 | < | atomData[0], | 
| 509 | < | atomData[1], | 
| 510 | < | atomData[2], | 
| 511 | < | atomData[3], | 
| 512 | < | atomData[4], | 
| 513 | < | atomData[5]); | 
| 514 | < |  | 
| 515 | < | strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" ); | 
| 516 | < |  | 
| 517 | < | } | 
| 518 | < | else { | 
| 519 | < |  | 
| 520 | < | sprintf( writeLine, | 
| 521 | < | "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n", | 
| 522 | < | atomTypeString, | 
| 523 | < | atomData[0], | 
| 524 | < | atomData[1], | 
| 525 | < | atomData[2], | 
| 526 | < | atomData[3], | 
| 527 | < | atomData[4], | 
| 528 | < | atomData[5], | 
| 529 | < | atomData[6], | 
| 530 | < | atomData[7], | 
| 531 | < | atomData[8], | 
| 532 | < | atomData[9], | 
| 533 | < | atomData[10], | 
| 534 | < | atomData[11], | 
| 535 | < | atomData[12]); | 
| 536 | < |  | 
| 537 | < | } | 
| 538 | < |  | 
| 539 | < | for(k = 0; k < outFile.size(); k++) | 
| 540 | < | *outFile[k] << writeLine; | 
| 541 | < |  | 
| 542 | < |  | 
| 543 | < | }//end for(iter = integrableObject.begin()) | 
| 544 | < |  | 
| 545 | < | currentIndex++; | 
| 546 | < | } | 
| 369 | > | pos = integrableObject->getPos(); | 
| 370 | > | vel = integrableObject->getVel(); | 
| 371 |  |  | 
| 372 | < | }//end for(i = 0; i < mpiSim->getNmol()) | 
| 373 | < |  | 
| 374 | < | for(k = 0; k < outFile.size(); k++) | 
| 551 | < | outFile[k]->flush(); | 
| 552 | < |  | 
| 553 | < | sprintf( checkPointMsg, | 
| 554 | < | "Sucessfully took a dump.\n"); | 
| 555 | < |  | 
| 556 | < | MPIcheckPoint(); | 
| 557 | < |  | 
| 558 | < | delete[] potatoes; | 
| 559 | < |  | 
| 560 | < | } else { | 
| 372 | > | atomData[0] = pos[0]; | 
| 373 | > | atomData[1] = pos[1]; | 
| 374 | > | atomData[2] = pos[2]; | 
| 375 |  |  | 
| 376 | < | // worldRank != 0, so I'm a remote node. | 
| 376 | > | atomData[3] = vel[0]; | 
| 377 | > | atomData[4] = vel[1]; | 
| 378 | > | atomData[5] = vel[2]; | 
| 379 |  |  | 
| 380 | < | // Set my magic potato to 0: | 
| 380 | > | isDirectional = 0; | 
| 381 |  |  | 
| 382 | < | myPotato = 0; | 
| 383 | < | currentIndex = 0; | 
| 568 | < |  | 
| 569 | < | for (i = 0 ; i < mpiSim->getNMolGlobal(); i++ ) { | 
| 570 | < |  | 
| 571 | < | // Am I the node which has this integrableObject? | 
| 572 | < |  | 
| 573 | < | if (MolToProcMap[i] == worldRank) { | 
| 382 | > | if (integrableObject->isDirectional()) { | 
| 383 | > | isDirectional = 1; | 
| 384 |  |  | 
| 385 | + | q = integrableObject->getQ(); | 
| 386 | + | ji = integrableObject->getJ(); | 
| 387 |  |  | 
| 388 | < | if (myPotato + 1 >= MAXTAG) { | 
| 389 | < |  | 
| 390 | < | // The potato was going to exceed the maximum value, | 
| 579 | < | // so wrap this processor potato back to 0 (and block until | 
| 580 | < | // node 0 says we can go: | 
| 581 | < |  | 
| 582 | < | MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &istatus); | 
| 583 | < |  | 
| 584 | < | } | 
| 388 | > | for(int j = 0; j < 6; j++) { | 
| 389 | > | atomData[j] = atomData[j]; | 
| 390 | > | } | 
| 391 |  |  | 
| 392 | < | local_index = indexArray[currentIndex].first; | 
| 393 | < | integrableObjects = entry_plug->molecules[local_index].getIntegrableObjects(); | 
| 394 | < |  | 
| 395 | < | nCurObj = integrableObjects.size(); | 
| 590 | < |  | 
| 591 | < | MPI_Send(&nCurObj, 1, MPI_INT, 0, | 
| 592 | < | myPotato, MPI_COMM_WORLD); | 
| 593 | < | myPotato++; | 
| 392 | > | atomData[6] = q[0]; | 
| 393 | > | atomData[7] = q[1]; | 
| 394 | > | atomData[8] = q[2]; | 
| 395 | > | atomData[9] = q[3]; | 
| 396 |  |  | 
| 397 | < | for( iter = integrableObjects.begin(); iter  != integrableObjects.end(); iter++){ | 
| 397 | > | atomData[10] = ji[0]; | 
| 398 | > | atomData[11] = ji[1]; | 
| 399 | > | atomData[12] = ji[2]; | 
| 400 | > | } | 
| 401 |  |  | 
| 402 | < | if (myPotato + 2 >= MAXTAG) { | 
| 403 | < |  | 
| 404 | < | // The potato was going to exceed the maximum value, | 
| 405 | < | // so wrap this processor potato back to 0 (and block until | 
| 406 | < | // node 0 says we can go: | 
| 407 | < |  | 
| 408 | < | MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &istatus); | 
| 409 | < |  | 
| 402 | > | // If we've survived to here, format the line: | 
| 403 | > |  | 
| 404 | > | if (!isDirectional) { | 
| 405 | > | sprintf(writeLine, "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t", | 
| 406 | > | atomTypeString, atomData[0], | 
| 407 | > | atomData[1], atomData[2], | 
| 408 | > | atomData[3], atomData[4], | 
| 409 | > | atomData[5]); | 
| 410 | > |  | 
| 411 | > | strcat(writeLine, | 
| 412 | > | "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n"); | 
| 413 | > | } else { | 
| 414 | > | sprintf(writeLine, | 
| 415 | > | "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n", | 
| 416 | > | atomTypeString, | 
| 417 | > | atomData[0], | 
| 418 | > | atomData[1], | 
| 419 | > | atomData[2], | 
| 420 | > | atomData[3], | 
| 421 | > | atomData[4], | 
| 422 | > | atomData[5], | 
| 423 | > | atomData[6], | 
| 424 | > | atomData[7], | 
| 425 | > | atomData[8], | 
| 426 | > | atomData[9], | 
| 427 | > | atomData[10], | 
| 428 | > | atomData[11], | 
| 429 | > | atomData[12]); | 
| 430 | > | } | 
| 431 | > |  | 
| 432 | > |  | 
| 433 | > | os << writeLine; | 
| 434 | > |  | 
| 435 | > | } //end for(iter = integrableObject.begin()) | 
| 436 |  | } | 
| 437 | < |  | 
| 607 | < | sd = *iter; | 
| 608 | < |  | 
| 609 | < | atomTypeString = sd->getType(); | 
| 437 | > | } //end for(i = 0; i < mpiSim->getNmol()) | 
| 438 |  |  | 
| 439 | < | sd->getPos(pos); | 
| 440 | < | sd->getVel(vel); | 
| 439 | > | os.flush(); | 
| 440 | > |  | 
| 441 | > | sprintf(checkPointMsg, "Sucessfully took a dump.\n"); | 
| 442 | > | MPIcheckPoint(); | 
| 443 |  |  | 
| 444 | < | atomData[0] = pos[0]; | 
| 445 | < | atomData[1] = pos[1]; | 
| 616 | < | atomData[2] = pos[2]; | 
| 444 | > | delete [] potatoes; | 
| 445 | > | } else { | 
| 446 |  |  | 
| 447 | < | atomData[3] = vel[0]; | 
| 619 | < | atomData[4] = vel[1]; | 
| 620 | < | atomData[5] = vel[2]; | 
| 621 | < |  | 
| 622 | < | isDirectional = 0; | 
| 447 | > | // worldRank != 0, so I'm a remote node. | 
| 448 |  |  | 
| 449 | < | if( sd->isDirectional() ){ | 
| 449 | > | // Set my magic potato to 0: | 
| 450 |  |  | 
| 451 | < | isDirectional = 1; | 
| 451 | > | myPotato = 0; | 
| 452 | > |  | 
| 453 | > | for(int i = 0; i < info_->getNGlobalMolecules(); i++) { | 
| 454 | > |  | 
| 455 | > | // Am I the node which has this integrableObject? | 
| 456 | > | int whichNode = info_->getMolToProc(i); | 
| 457 | > | if (whichNode == worldRank) { | 
| 458 | > | if (myPotato + 1 >= MAXTAG) { | 
| 459 | > |  | 
| 460 | > | // The potato was going to exceed the maximum value, | 
| 461 | > | // so wrap this processor potato back to 0 (and block until | 
| 462 | > | // node 0 says we can go: | 
| 463 | > |  | 
| 464 | > | MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, | 
| 465 | > | &istatus); | 
| 466 | > | } | 
| 467 | > |  | 
| 468 | > | mol = info_->getMoleculeByGlobalIndex(i); | 
| 469 | > |  | 
| 470 |  |  | 
| 471 | < | sd->getQ( q ); | 
| 629 | < | sd->getJ( ji ); | 
| 630 | < |  | 
| 631 | < |  | 
| 632 | < | atomData[6] = q[0]; | 
| 633 | < | atomData[7] = q[1]; | 
| 634 | < | atomData[8] = q[2]; | 
| 635 | < | atomData[9] = q[3]; | 
| 636 | < |  | 
| 637 | < | atomData[10] = ji[0]; | 
| 638 | < | atomData[11] = ji[1]; | 
| 639 | < | atomData[12] = ji[2]; | 
| 640 | < | } | 
| 471 | > | nCurObj = mol->getNIntegrableObjects(); | 
| 472 |  |  | 
| 473 | < |  | 
| 474 | < | strncpy(MPIatomTypeString, atomTypeString, MINIBUFFERSIZE); | 
| 473 | > | MPI_Send(&nCurObj, 1, MPI_INT, 0, myPotato, MPI_COMM_WORLD); | 
| 474 | > | myPotato++; | 
| 475 |  |  | 
| 476 | < | // null terminate the string before sending (just in case): | 
| 477 | < | MPIatomTypeString[MINIBUFFERSIZE-1] = '\0'; | 
| 476 | > | for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; | 
| 477 | > | integrableObject = mol->nextIntegrableObject(ii)) { | 
| 478 |  |  | 
| 479 | < | MPI_Send(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, 0, | 
| 649 | < | myPotato, MPI_COMM_WORLD); | 
| 650 | < |  | 
| 651 | < | myPotato++; | 
| 652 | < |  | 
| 653 | < | if (isDirectional) { | 
| 479 | > | if (myPotato + 2 >= MAXTAG) { | 
| 480 |  |  | 
| 481 | < | MPI_Send(atomData, 13, MPI_DOUBLE, 0, | 
| 482 | < | myPotato, MPI_COMM_WORLD); | 
| 483 | < |  | 
| 658 | < | } else { | 
| 481 | > | // The potato was going to exceed the maximum value, | 
| 482 | > | // so wrap this processor potato back to 0 (and block until | 
| 483 | > | // node 0 says we can go: | 
| 484 |  |  | 
| 485 | < | MPI_Send(atomData, 6, MPI_DOUBLE, 0, | 
| 486 | < | myPotato, MPI_COMM_WORLD); | 
| 487 | < | } | 
| 485 | > | MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, | 
| 486 | > | &istatus); | 
| 487 | > | } | 
| 488 |  |  | 
| 489 | < | myPotato++; | 
| 489 | > | atomTypeString = integrableObject->getType().c_str(); | 
| 490 |  |  | 
| 491 | < | } | 
| 491 | > | pos = integrableObject->getPos(); | 
| 492 | > | vel = integrableObject->getVel(); | 
| 493 |  |  | 
| 494 | < | currentIndex++; | 
| 495 | < |  | 
| 496 | < | } | 
| 671 | < |  | 
| 672 | < | } | 
| 494 | > | atomData[0] = pos[0]; | 
| 495 | > | atomData[1] = pos[1]; | 
| 496 | > | atomData[2] = pos[2]; | 
| 497 |  |  | 
| 498 | < | sprintf( checkPointMsg, | 
| 499 | < | "Successfully took a dump.\n"); | 
| 500 | < | MPIcheckPoint(); | 
| 677 | < |  | 
| 678 | < | } | 
| 679 | < |  | 
| 680 | < | #endif // is_mpi | 
| 681 | < | } | 
| 498 | > | atomData[3] = vel[0]; | 
| 499 | > | atomData[4] = vel[1]; | 
| 500 | > | atomData[5] = vel[2]; | 
| 501 |  |  | 
| 502 | < | #ifdef IS_MPI | 
| 502 | > | isDirectional = 0; | 
| 503 |  |  | 
| 504 | < | // a couple of functions to let us escape the write loop | 
| 504 | > | if (integrableObject->isDirectional()) { | 
| 505 | > | isDirectional = 1; | 
| 506 |  |  | 
| 507 | < | void dWrite::DieDieDie( void ){ | 
| 507 | > | q = integrableObject->getQ(); | 
| 508 | > | ji = integrableObject->getJ(); | 
| 509 |  |  | 
| 510 | < | MPI_Finalize(); | 
| 511 | < | exit (0); | 
| 510 | > | atomData[6] = q[0]; | 
| 511 | > | atomData[7] = q[1]; | 
| 512 | > | atomData[8] = q[2]; | 
| 513 | > | atomData[9] = q[3]; | 
| 514 | > |  | 
| 515 | > | atomData[10] = ji[0]; | 
| 516 | > | atomData[11] = ji[1]; | 
| 517 | > | atomData[12] = ji[2]; | 
| 518 | > | } | 
| 519 | > |  | 
| 520 | > | strncpy(MPIatomTypeString, atomTypeString, MINIBUFFERSIZE); | 
| 521 | > |  | 
| 522 | > | // null terminate the  std::string before sending (just in case): | 
| 523 | > | MPIatomTypeString[MINIBUFFERSIZE - 1] = '\0'; | 
| 524 | > |  | 
| 525 | > | MPI_Send(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, 0, | 
| 526 | > | myPotato, MPI_COMM_WORLD); | 
| 527 | > |  | 
| 528 | > | myPotato++; | 
| 529 | > |  | 
| 530 | > | if (isDirectional) { | 
| 531 | > | MPI_Send(atomData, 13, MPI_DOUBLE, 0, myPotato, | 
| 532 | > | MPI_COMM_WORLD); | 
| 533 | > | } else { | 
| 534 | > | MPI_Send(atomData, 6, MPI_DOUBLE, 0, myPotato, | 
| 535 | > | MPI_COMM_WORLD); | 
| 536 | > | } | 
| 537 | > |  | 
| 538 | > | myPotato++; | 
| 539 | > | } | 
| 540 | > |  | 
| 541 | > | } | 
| 542 | > |  | 
| 543 | > | } | 
| 544 | > | sprintf(checkPointMsg, "Sucessfully took a dump.\n"); | 
| 545 | > | MPIcheckPoint(); | 
| 546 | > | } | 
| 547 | > |  | 
| 548 | > | #endif // is_mpi | 
| 549 | > |  | 
| 550 |  | } | 
| 551 |  |  | 
| 552 | < | #endif //is_mpi | 
| 552 | > | }//end namespace oopse |