| 1 |
< |
/* |
| 1 |
> |
/* |
| 2 |
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
|
* |
| 4 |
|
* The University of Notre Dame grants you ("Licensee") a |
| 55 |
|
|
| 56 |
|
namespace oopse { |
| 57 |
|
|
| 58 |
< |
/** |
| 59 |
< |
* @class ChebyshevPolynomials |
| 60 |
< |
* A collection of Chebyshev Polynomials. |
| 61 |
< |
* @todo document |
| 62 |
< |
*/ |
| 63 |
< |
class ChebyshevPolynomials { |
| 64 |
< |
public: |
| 65 |
< |
ChebyshevPolynomials(int maxPower); |
| 58 |
> |
/** |
| 59 |
> |
* @class ChebyshevPolynomials |
| 60 |
> |
* A collection of Chebyshev Polynomials. |
| 61 |
> |
* @todo document |
| 62 |
> |
*/ |
| 63 |
> |
class ChebyshevPolynomials { |
| 64 |
> |
public: |
| 65 |
> |
ChebyshevPolynomials(int maxPower); |
| 66 |
|
|
| 67 |
< |
/** |
| 68 |
< |
* Calculates the value of the nth Chebyshev Polynomial evaluated at the given x value. |
| 69 |
< |
* @return The value of the nth Chebyshev Polynomial evaluates at the given x value |
| 70 |
< |
* @param n |
| 71 |
< |
* @param x the value of the independent variable for the nth Chebyshev Polynomial function |
| 72 |
< |
*/ |
| 67 |
> |
/** |
| 68 |
> |
* Calculates the value of the nth Chebyshev Polynomial evaluated at the given x value. |
| 69 |
> |
* @return The value of the nth Chebyshev Polynomial evaluates at the given x value |
| 70 |
> |
* @param n |
| 71 |
> |
* @param x the value of the independent variable for the nth Chebyshev Polynomial function |
| 72 |
> |
*/ |
| 73 |
|
|
| 74 |
< |
double evaluate(int n, double x) { |
| 75 |
< |
assert (n <= maxPower_ && n >=0); |
| 76 |
< |
return polyList_[n].evaluate(x); |
| 77 |
< |
} |
| 74 |
> |
double evaluate(int n, double x) { |
| 75 |
> |
assert (n <= maxPower_ && n >=0); |
| 76 |
> |
return polyList_[n].evaluate(x); |
| 77 |
> |
} |
| 78 |
|
|
| 79 |
< |
/** |
| 80 |
< |
* Returns the first derivative of the nth Chebyshev Polynomial. |
| 81 |
< |
* @return the first derivative of the nth Chebyshev Polynomial |
| 82 |
< |
* @param n |
| 83 |
< |
* @param x the value of the independent variable for the nth Chebyshev Polynomial function |
| 84 |
< |
*/ |
| 85 |
< |
double evaluateDerivative(int n, double x) { |
| 86 |
< |
assert (n <= maxPower_ && n >=0); |
| 87 |
< |
return polyList_[n].evaluateDerivative(x); |
| 88 |
< |
} |
| 79 |
> |
/** |
| 80 |
> |
* Returns the first derivative of the nth Chebyshev Polynomial. |
| 81 |
> |
* @return the first derivative of the nth Chebyshev Polynomial |
| 82 |
> |
* @param n |
| 83 |
> |
* @param x the value of the independent variable for the nth Chebyshev Polynomial function |
| 84 |
> |
*/ |
| 85 |
> |
double evaluateDerivative(int n, double x) { |
| 86 |
> |
assert (n <= maxPower_ && n >=0); |
| 87 |
> |
return polyList_[n].evaluateDerivative(x); |
| 88 |
> |
} |
| 89 |
|
|
| 90 |
< |
/** |
| 91 |
< |
* Returns the nth Chebyshev Polynomial |
| 92 |
< |
* @return the nth Chebyshev Polynomial |
| 93 |
< |
* @param n |
| 94 |
< |
*/ |
| 95 |
< |
const DoublePolynomial& getChebyshevPolynomial(int n) const { |
| 96 |
< |
assert (n <= maxPower_ && n >=0); |
| 97 |
< |
return polyList_[n]; |
| 98 |
< |
} |
| 90 |
> |
/** |
| 91 |
> |
* Returns the nth Chebyshev Polynomial |
| 92 |
> |
* @return the nth Chebyshev Polynomial |
| 93 |
> |
* @param n |
| 94 |
> |
*/ |
| 95 |
> |
const DoublePolynomial& getChebyshevPolynomial(int n) const { |
| 96 |
> |
assert (n <= maxPower_ && n >=0); |
| 97 |
> |
return polyList_[n]; |
| 98 |
> |
} |
| 99 |
|
|
| 100 |
< |
protected: |
| 100 |
> |
protected: |
| 101 |
|
|
| 102 |
< |
std::vector<DoublePolynomial> polyList_; |
| 102 |
> |
std::vector<DoublePolynomial> polyList_; |
| 103 |
|
|
| 104 |
< |
private: |
| 104 |
> |
private: |
| 105 |
|
|
| 106 |
< |
void GeneratePolynomials(int maxPower); |
| 107 |
< |
virtual void GenerateFirstTwoTerms() = 0; |
| 106 |
> |
void GeneratePolynomials(int maxPower); |
| 107 |
> |
virtual void GenerateFirstTwoTerms() = 0; |
| 108 |
|
|
| 109 |
< |
int maxPower_; |
| 110 |
< |
}; |
| 109 |
> |
int maxPower_; |
| 110 |
> |
}; |
| 111 |
|
|
| 112 |
< |
/** |
| 113 |
< |
* @class ChebyshevT |
| 114 |
< |
* @todo document |
| 115 |
< |
*/ |
| 116 |
< |
class ChebyshevT : public ChebyshevPolynomials { |
| 117 |
< |
public: |
| 118 |
< |
ChebyshevT(int maxPower) :ChebyshevPolynomials(maxPower) {} |
| 112 |
> |
/** |
| 113 |
> |
* @class ChebyshevT |
| 114 |
> |
* @todo document |
| 115 |
> |
*/ |
| 116 |
> |
class ChebyshevT : public ChebyshevPolynomials { |
| 117 |
> |
public: |
| 118 |
> |
ChebyshevT(int maxPower) :ChebyshevPolynomials(maxPower) {} |
| 119 |
|
|
| 120 |
< |
private: |
| 121 |
< |
virtual void GenerateFirstTwoTerms(); |
| 122 |
< |
}; |
| 120 |
> |
private: |
| 121 |
> |
virtual void GenerateFirstTwoTerms(); |
| 122 |
> |
}; |
| 123 |
|
|
| 124 |
< |
/** |
| 125 |
< |
* @class ChebyshevU |
| 126 |
< |
* @todo document |
| 127 |
< |
*/ |
| 128 |
< |
class ChebyshevU : public ChebyshevPolynomials { |
| 129 |
< |
public: |
| 130 |
< |
ChebyshevU(int maxPower) :ChebyshevPolynomials(maxPower) {} |
| 124 |
> |
/** |
| 125 |
> |
* @class ChebyshevU |
| 126 |
> |
* @todo document |
| 127 |
> |
*/ |
| 128 |
> |
class ChebyshevU : public ChebyshevPolynomials { |
| 129 |
> |
public: |
| 130 |
> |
ChebyshevU(int maxPower) :ChebyshevPolynomials(maxPower) {} |
| 131 |
|
|
| 132 |
< |
private: |
| 133 |
< |
virtual void GenerateFirstTwoTerms(); |
| 134 |
< |
}; |
| 132 |
> |
private: |
| 133 |
> |
virtual void GenerateFirstTwoTerms(); |
| 134 |
> |
}; |
| 135 |
|
|
| 136 |
|
|
| 137 |
|
} //end namespace oopse |