| 36 |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 |  | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | < | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 39 | > | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | > | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 42 | + |  | 
| 43 | + | #include "math/Vector.hpp" | 
| 44 | + |  | 
| 45 |  | #ifndef MATH_CHOLESKYDECOMPOSITION_HPP | 
| 46 |  | #define MATH_CHOLESKYDECOMPOSITION_HPP | 
| 47 |  |  | 
| 48 | + | using namespace std; | 
| 49 |  | namespace OpenMD { | 
| 50 | < | template<class MatrixType> | 
| 51 | < | int CholeskyDecomposition(MatrixType& A, MatrixType& L) { | 
| 50 | > |  | 
| 51 | > | template<class MatrixType> | 
| 52 | > | void CholeskyDecomposition(MatrixType& A, MatrixType& L) { | 
| 53 | > |  | 
| 54 |  | int n = A.getNRow(); | 
| 55 | < | assert(n == A.getNCol() && n == L.getNRow()&& n==L.getNCol()); | 
| 56 | < | for(int i = 0; i < n; ++i) { | 
| 57 | < | RealType sum1 = 0; | 
| 58 | < | for (int k = 0; k < i -1; ++k) { | 
| 59 | < | sum1 +=L(i,k)*L(i,k); | 
| 55 | > | assert(n == A.getNCol() && n == L.getNRow() && n == L.getNCol()); | 
| 56 | > |  | 
| 57 | > | bool isspd(true); | 
| 58 | > | RealType eps = A.diagonals().abs().max()  * | 
| 59 | > | (numeric_limits<RealType>::epsilon())/100; | 
| 60 | > |  | 
| 61 | > |  | 
| 62 | > | for(int j = 0; j < n; j++) { | 
| 63 | > | RealType d(0.0); | 
| 64 | > | for (int k = 0; k < j; k++) { | 
| 65 | > | RealType s(0.0); | 
| 66 | > |  | 
| 67 | > | for (int i = 0; i < k; i++) { | 
| 68 | > | s += L(k,i) * L(j,i); | 
| 69 |  | } | 
| 70 | < | L(i, i) = sqrt(A(i, i) - sum1); | 
| 71 | < | for (int j = i+1; j < n; ++j) { | 
| 72 | < | RealType sum2 = 0; | 
| 73 | < | for (int k = 0; k < i-1; ++k) { | 
| 74 | < | sum2 += L(j ,k)*L(i, k); | 
| 75 | < | } | 
| 76 | < | L(j, i) = (A(j, i) - sum2) /L(i,i); | 
| 70 | > |  | 
| 71 | > | // if L(k,k) != 0 | 
| 72 | > | if (std::abs(L(k,k)) > eps) { | 
| 73 | > | s = (A(j,k) - s) / L(k,k); | 
| 74 | > | } else { | 
| 75 | > | s = (A(j,k) -s); | 
| 76 | > | isspd = false; | 
| 77 |  | } | 
| 78 | + | L(j,k) = s; | 
| 79 | + | d = d + s*s; | 
| 80 | + |  | 
| 81 | + | // this is approximately doing: isspd = isspd && ( A(k,j) == A(j,k) ) | 
| 82 | + | isspd = isspd && (abs(A(k,j) - A(j,k)) < eps ); | 
| 83 | + | } | 
| 84 | + | d = A(j,j) - d; | 
| 85 | + | isspd = isspd && (d > eps); | 
| 86 | + | L(j,j) = sqrt(d > 0.0 ? d : 0.0); | 
| 87 | + | for (int k = j+1; k < n; k++)  { | 
| 88 | + | L(j,k) = 0.0; | 
| 89 | + | } | 
| 90 |  | } | 
| 91 | < |  | 
| 64 | < | return 0; | 
| 65 | < |  | 
| 91 | > | } | 
| 92 |  | } | 
| 93 |  |  | 
| 68 | – |  | 
| 69 | – | } | 
| 70 | – |  | 
| 94 |  | #endif |