| 1 | gezelter | 1475 | /* | 
| 2 |  |  | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 |  |  | * | 
| 4 |  |  | * The University of Notre Dame grants you ("Licensee") a | 
| 5 |  |  | * non-exclusive, royalty free, license to use, modify and | 
| 6 |  |  | * redistribute this software in source and binary code form, provided | 
| 7 |  |  | * that the following conditions are met: | 
| 8 |  |  | * | 
| 9 |  |  | * 1. Redistributions of source code must retain the above copyright | 
| 10 |  |  | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  |  | * | 
| 12 |  |  | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 |  |  | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  |  | *    documentation and/or other materials provided with the | 
| 15 |  |  | *    distribution. | 
| 16 |  |  | * | 
| 17 |  |  | * This software is provided "AS IS," without a warranty of any | 
| 18 |  |  | * kind. All express or implied conditions, representations and | 
| 19 |  |  | * warranties, including any implied warranty of merchantability, | 
| 20 |  |  | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 |  |  | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 |  |  | * be liable for any damages suffered by licensee as a result of | 
| 23 |  |  | * using, modifying or distributing the software or its | 
| 24 |  |  | * derivatives. In no event will the University of Notre Dame or its | 
| 25 |  |  | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 |  |  | * direct, indirect, special, consequential, incidental or punitive | 
| 27 |  |  | * damages, however caused and regardless of the theory of liability, | 
| 28 |  |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  |  | * such damages. | 
| 31 |  |  | * | 
| 32 |  |  | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 |  |  | * research, please cite the appropriate papers when you publish your | 
| 34 |  |  | * work.  Good starting points are: | 
| 35 |  |  | * | 
| 36 |  |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 |  |  | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 |  |  | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 40 |  |  | */ | 
| 41 |  |  |  | 
| 42 |  |  | #include "math/CubicSpline.hpp" | 
| 43 |  |  | #include "utils/simError.h" | 
| 44 |  |  | #include <cmath> | 
| 45 |  |  | #include <algorithm> | 
| 46 |  |  |  | 
| 47 |  |  | using namespace OpenMD; | 
| 48 |  |  | using namespace std; | 
| 49 |  |  |  | 
| 50 | gezelter | 1536 | CubicSpline::CubicSpline() : generated(false), isUniform(true) { | 
| 51 |  |  | data_.clear(); | 
| 52 |  |  | } | 
| 53 | gezelter | 1475 |  | 
| 54 | gezelter | 1536 | void CubicSpline::addPoint(const RealType xp, const RealType yp) { | 
| 55 |  |  | data_.push_back(make_pair(xp, yp)); | 
| 56 | gezelter | 1475 | } | 
| 57 |  |  |  | 
| 58 |  |  | void CubicSpline::addPoints(const vector<RealType>& xps, | 
| 59 |  |  | const vector<RealType>& yps) { | 
| 60 |  |  |  | 
| 61 |  |  | if (xps.size() != yps.size()) { | 
| 62 |  |  | printf( painCave.errMsg, | 
| 63 |  |  | "CubicSpline::addPoints was passed vectors of different length!\n"); | 
| 64 |  |  | painCave.severity = OPENMD_ERROR; | 
| 65 |  |  | painCave.isFatal = 1; | 
| 66 |  |  | simError(); | 
| 67 |  |  | } | 
| 68 |  |  |  | 
| 69 |  |  | for (int i = 0; i < xps.size(); i++) | 
| 70 | gezelter | 1536 | data_.push_back(make_pair(xps[i], yps[i])); | 
| 71 | gezelter | 1475 | } | 
| 72 |  |  |  | 
| 73 |  |  | void CubicSpline::generate() { | 
| 74 |  |  | // Calculate coefficients defining a smooth cubic interpolatory spline. | 
| 75 |  |  | // | 
| 76 |  |  | // class values constructed: | 
| 77 | gezelter | 1536 | //   n   = number of data_ points. | 
| 78 | gezelter | 1475 | //   x   = vector of independent variable values | 
| 79 |  |  | //   y   = vector of dependent variable values | 
| 80 |  |  | //   b   = vector of S'(x[i]) values. | 
| 81 |  |  | //   c   = vector of S"(x[i])/2 values. | 
| 82 |  |  | //   d   = vector of S'''(x[i]+)/6 values (i < n). | 
| 83 |  |  | // Local variables: | 
| 84 | gezelter | 1536 |  | 
| 85 | gezelter | 1475 | RealType fp1, fpn, h, p; | 
| 86 |  |  |  | 
| 87 |  |  | // make sure the sizes match | 
| 88 |  |  |  | 
| 89 | gezelter | 1536 | n = data_.size(); | 
| 90 | gezelter | 1475 | b.resize(n); | 
| 91 |  |  | c.resize(n); | 
| 92 |  |  | d.resize(n); | 
| 93 |  |  |  | 
| 94 |  |  | // make sure we are monotonically increasing in x: | 
| 95 |  |  |  | 
| 96 |  |  | bool sorted = true; | 
| 97 |  |  |  | 
| 98 |  |  | for (int i = 1; i < n; i++) { | 
| 99 | gezelter | 1536 | if ( (data_[i].first - data_[i-1].first ) <= 0.0 ) sorted = false; | 
| 100 | gezelter | 1475 | } | 
| 101 |  |  |  | 
| 102 |  |  | // sort if necessary | 
| 103 |  |  |  | 
| 104 | gezelter | 1536 | if (!sorted) sort(data_.begin(), data_.end()); | 
| 105 | gezelter | 1475 |  | 
| 106 |  |  | // Calculate coefficients for the tridiagonal system: store | 
| 107 |  |  | // sub-diagonal in B, diagonal in D, difference quotient in C. | 
| 108 |  |  |  | 
| 109 | gezelter | 1536 | b[0] = data_[1].first - data_[0].first; | 
| 110 |  |  | c[0] = (data_[1].second - data_[0].second) / b[0]; | 
| 111 | gezelter | 1475 |  | 
| 112 |  |  | if (n == 2) { | 
| 113 |  |  |  | 
| 114 |  |  | // Assume the derivatives at both endpoints are zero. Another | 
| 115 |  |  | // assumption could be made to have a linear interpolant between | 
| 116 |  |  | // the two points.  In that case, the b coefficients below would be | 
| 117 | gezelter | 1536 | // (data_[1].second - data_[0].second) / (data_[1].first - data_[0].first) | 
| 118 | gezelter | 1475 | // and the c and d coefficients would both be zero. | 
| 119 |  |  | b[0] = 0.0; | 
| 120 | gezelter | 1536 | c[0] = -3.0 * pow((data_[1].second - data_[0].second) / | 
| 121 |  |  | (data_[1].first-data_[0].first), 2); | 
| 122 |  |  | d[0] = -2.0 * pow((data_[1].second - data_[0].second) / | 
| 123 |  |  | (data_[1].first-data_[0].first), 3); | 
| 124 | gezelter | 1475 | b[1] = b[0]; | 
| 125 |  |  | c[1] = 0.0; | 
| 126 |  |  | d[1] = 0.0; | 
| 127 | gezelter | 1536 | dx = 1.0 / (data_[1].first - data_[0].first); | 
| 128 | gezelter | 1475 | isUniform = true; | 
| 129 |  |  | generated = true; | 
| 130 |  |  | return; | 
| 131 |  |  | } | 
| 132 |  |  |  | 
| 133 |  |  | d[0] = 2.0 * b[0]; | 
| 134 |  |  |  | 
| 135 |  |  | for (int i = 1; i < n-1; i++) { | 
| 136 | gezelter | 1536 | b[i] = data_[i+1].first - data_[i].first; | 
| 137 | gezelter | 1475 | if ( fabs( b[i] - b[0] ) / b[0] > 1.0e-5) isUniform = false; | 
| 138 | gezelter | 1536 | c[i] = (data_[i+1].second - data_[i].second) / b[i]; | 
| 139 | gezelter | 1475 | d[i] = 2.0 * (b[i] + b[i-1]); | 
| 140 |  |  | } | 
| 141 |  |  |  | 
| 142 |  |  | d[n-1] = 2.0 * b[n-2]; | 
| 143 |  |  |  | 
| 144 |  |  | // Calculate estimates for the end slopes using polynomials | 
| 145 | gezelter | 1536 | // that interpolate the data_ nearest the end. | 
| 146 | gezelter | 1475 |  | 
| 147 |  |  | fp1 = c[0] - b[0]*(c[1] - c[0])/(b[0] + b[1]); | 
| 148 |  |  | if (n > 3) fp1 = fp1 + b[0]*((b[0] + b[1]) * (c[2] - c[1]) / | 
| 149 |  |  | (b[1] + b[2]) - | 
| 150 | gezelter | 1536 | c[1] + c[0]) / (data_[3].first - data_[0].first); | 
| 151 | gezelter | 1475 |  | 
| 152 |  |  | fpn = c[n-2] + b[n-2]*(c[n-2] - c[n-3])/(b[n-3] + b[n-2]); | 
| 153 |  |  |  | 
| 154 |  |  | if (n > 3)  fpn = fpn + b[n-2] * | 
| 155 |  |  | (c[n-2] - c[n-3] - (b[n-3] + b[n-2]) * | 
| 156 | gezelter | 1536 | (c[n-3] - c[n-4])/(b[n-3] + b[n-4]))/(data_[n-1].first - data_[n-4].first); | 
| 157 | gezelter | 1475 |  | 
| 158 |  |  |  | 
| 159 |  |  | // Calculate the right hand side and store it in C. | 
| 160 |  |  |  | 
| 161 |  |  | c[n-1] = 3.0 * (fpn - c[n-2]); | 
| 162 |  |  | for (int i = n-2; i > 0; i--) | 
| 163 |  |  | c[i] = 3.0 * (c[i] - c[i-1]); | 
| 164 |  |  | c[0] = 3.0 * (c[0] - fp1); | 
| 165 |  |  |  | 
| 166 |  |  | // Solve the tridiagonal system. | 
| 167 |  |  |  | 
| 168 |  |  | for (int k = 1; k < n; k++) { | 
| 169 |  |  | p = b[k-1] / d[k-1]; | 
| 170 |  |  | d[k] = d[k] - p*b[k-1]; | 
| 171 |  |  | c[k] = c[k] - p*c[k-1]; | 
| 172 |  |  | } | 
| 173 |  |  |  | 
| 174 |  |  | c[n-1] = c[n-1] / d[n-1]; | 
| 175 |  |  |  | 
| 176 |  |  | for (int k = n-2; k >= 0; k--) | 
| 177 |  |  | c[k] = (c[k] - b[k] * c[k+1]) / d[k]; | 
| 178 |  |  |  | 
| 179 |  |  | // Calculate the coefficients defining the spline. | 
| 180 |  |  |  | 
| 181 |  |  | for (int i = 0; i < n-1; i++) { | 
| 182 | gezelter | 1536 | h = data_[i+1].first - data_[i].first; | 
| 183 | gezelter | 1475 | d[i] = (c[i+1] - c[i]) / (3.0 * h); | 
| 184 | gezelter | 1536 | b[i] = (data_[i+1].second - data_[i].second)/h - h * (c[i] + h * d[i]); | 
| 185 | gezelter | 1475 | } | 
| 186 |  |  |  | 
| 187 |  |  | b[n-1] = b[n-2] + h * (2.0 * c[n-2] + h * 3.0 * d[n-2]); | 
| 188 |  |  |  | 
| 189 | gezelter | 1536 | if (isUniform) dx = 1.0 / (data_[1].first - data_[0].first); | 
| 190 | gezelter | 1475 |  | 
| 191 |  |  | generated = true; | 
| 192 |  |  | return; | 
| 193 |  |  | } | 
| 194 |  |  |  | 
| 195 |  |  | RealType CubicSpline::getValueAt(RealType t) { | 
| 196 |  |  | // Evaluate the spline at t using coefficients | 
| 197 |  |  | // | 
| 198 |  |  | // Input parameters | 
| 199 |  |  | //   t = point where spline is to be evaluated. | 
| 200 |  |  | // Output: | 
| 201 |  |  | //   value of spline at t. | 
| 202 |  |  |  | 
| 203 |  |  | if (!generated) generate(); | 
| 204 |  |  | RealType dt; | 
| 205 |  |  |  | 
| 206 | gezelter | 1536 | if ( t < data_[0].first || t > data_[n-1].first ) { | 
| 207 | gezelter | 1475 | sprintf( painCave.errMsg, | 
| 208 |  |  | "CubicSpline::getValueAt was passed a value outside the range of the spline!\n"); | 
| 209 |  |  | painCave.severity = OPENMD_ERROR; | 
| 210 |  |  | painCave.isFatal = 1; | 
| 211 |  |  | simError(); | 
| 212 |  |  | } | 
| 213 |  |  |  | 
| 214 |  |  | //  Find the interval ( x[j], x[j+1] ) that contains or is nearest | 
| 215 |  |  | //  to t. | 
| 216 |  |  |  | 
| 217 |  |  | int j; | 
| 218 |  |  |  | 
| 219 |  |  | if (isUniform) { | 
| 220 |  |  |  | 
| 221 | gezelter | 1536 | j = max(0, min(n-1, int((t - data_[0].first) * dx))); | 
| 222 | gezelter | 1475 |  | 
| 223 |  |  | } else { | 
| 224 |  |  |  | 
| 225 |  |  | j = n-1; | 
| 226 |  |  |  | 
| 227 |  |  | for (int i = 0; i < n; i++) { | 
| 228 | gezelter | 1536 | if ( t < data_[i].first ) { | 
| 229 | gezelter | 1475 | j = i-1; | 
| 230 |  |  | break; | 
| 231 |  |  | } | 
| 232 |  |  | } | 
| 233 |  |  | } | 
| 234 |  |  |  | 
| 235 |  |  | //  Evaluate the cubic polynomial. | 
| 236 |  |  |  | 
| 237 | gezelter | 1536 | dt = t - data_[j].first; | 
| 238 |  |  | return data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); | 
| 239 | gezelter | 1475 |  | 
| 240 |  |  | } | 
| 241 |  |  |  | 
| 242 |  |  |  | 
| 243 |  |  | pair<RealType, RealType> CubicSpline::getValueAndDerivativeAt(RealType t) { | 
| 244 |  |  | // Evaluate the spline and first derivative at t using coefficients | 
| 245 |  |  | // | 
| 246 |  |  | // Input parameters | 
| 247 |  |  | //   t = point where spline is to be evaluated. | 
| 248 |  |  | // Output: | 
| 249 |  |  | //   pair containing value of spline at t and first derivative at t | 
| 250 |  |  |  | 
| 251 |  |  | if (!generated) generate(); | 
| 252 |  |  | RealType dt; | 
| 253 |  |  |  | 
| 254 | gezelter | 1536 | if ( t < data_.front().first || t > data_.back().first ) { | 
| 255 | gezelter | 1475 | sprintf( painCave.errMsg, | 
| 256 |  |  | "CubicSpline::getValueAndDerivativeAt was passed a value outside the range of the spline!\n"); | 
| 257 |  |  | painCave.severity = OPENMD_ERROR; | 
| 258 |  |  | painCave.isFatal = 1; | 
| 259 |  |  | simError(); | 
| 260 |  |  | } | 
| 261 |  |  |  | 
| 262 |  |  | //  Find the interval ( x[j], x[j+1] ) that contains or is nearest | 
| 263 |  |  | //  to t. | 
| 264 |  |  |  | 
| 265 |  |  | int j; | 
| 266 |  |  |  | 
| 267 |  |  | if (isUniform) { | 
| 268 |  |  |  | 
| 269 | gezelter | 1536 | j = max(0, min(n-1, int((t - data_[0].first) * dx))); | 
| 270 | gezelter | 1475 |  | 
| 271 |  |  | } else { | 
| 272 |  |  |  | 
| 273 |  |  | j = n-1; | 
| 274 |  |  |  | 
| 275 |  |  | for (int i = 0; i < n; i++) { | 
| 276 | gezelter | 1536 | if ( t < data_[i].first ) { | 
| 277 | gezelter | 1475 | j = i-1; | 
| 278 |  |  | break; | 
| 279 |  |  | } | 
| 280 |  |  | } | 
| 281 |  |  | } | 
| 282 |  |  |  | 
| 283 |  |  | //  Evaluate the cubic polynomial. | 
| 284 |  |  |  | 
| 285 | gezelter | 1536 | dt = t - data_[j].first; | 
| 286 | gezelter | 1475 |  | 
| 287 | gezelter | 1536 | RealType yval = data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); | 
| 288 | gezelter | 1475 | RealType dydx = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]); | 
| 289 |  |  |  | 
| 290 |  |  | return make_pair(yval, dydx); | 
| 291 |  |  | } |