# | Line 36 | Line 36 | |
---|---|---|
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | ||
43 | #include "math/CubicSpline.hpp" | |
44 | #include "utils/simError.h" | |
45 | #include <cmath> | |
46 | + | #include <cstdio> |
47 | #include <algorithm> | |
46 | – | #include <iostream> |
48 | ||
49 | using namespace OpenMD; | |
50 | using namespace std; | |
51 | ||
52 | < | CubicSpline::CubicSpline() : generated(false), isUniform(true) {} |
52 | > | CubicSpline::CubicSpline() : generated(false), isUniform(true) { |
53 | > | data_.clear(); |
54 | > | } |
55 | ||
56 | < | void CubicSpline::addPoint(RealType xp, RealType yp) { |
57 | < | data.push_back(make_pair(xp, yp)); |
56 | > | void CubicSpline::addPoint(const RealType xp, const RealType yp) { |
57 | > | data_.push_back(make_pair(xp, yp)); |
58 | } | |
59 | ||
60 | void CubicSpline::addPoints(const vector<RealType>& xps, | |
# | Line 66 | Line 69 | void CubicSpline::addPoints(const vector<RealType>& xp | |
69 | } | |
70 | ||
71 | for (int i = 0; i < xps.size(); i++) | |
72 | < | data.push_back(make_pair(xps[i], yps[i])); |
72 | > | data_.push_back(make_pair(xps[i], yps[i])); |
73 | } | |
74 | ||
75 | void CubicSpline::generate() { | |
76 | // Calculate coefficients defining a smooth cubic interpolatory spline. | |
77 | // | |
78 | // class values constructed: | |
79 | < | // n = number of data points. |
79 | > | // n = number of data_ points. |
80 | // x = vector of independent variable values | |
81 | // y = vector of dependent variable values | |
82 | // b = vector of S'(x[i]) values. | |
83 | // c = vector of S"(x[i])/2 values. | |
84 | // d = vector of S'''(x[i]+)/6 values (i < n). | |
85 | // Local variables: | |
86 | < | |
86 | > | |
87 | RealType fp1, fpn, h, p; | |
88 | ||
89 | // make sure the sizes match | |
90 | ||
91 | < | n = data.size(); |
91 | > | n = data_.size(); |
92 | b.resize(n); | |
93 | c.resize(n); | |
94 | d.resize(n); | |
# | Line 95 | Line 98 | void CubicSpline::generate() { | |
98 | bool sorted = true; | |
99 | ||
100 | for (int i = 1; i < n; i++) { | |
101 | < | if ( (data[i].first - data[i-1].first ) <= 0.0 ) sorted = false; |
101 | > | if ( (data_[i].first - data_[i-1].first ) <= 0.0 ) sorted = false; |
102 | } | |
103 | ||
104 | // sort if necessary | |
105 | ||
106 | < | if (!sorted) sort(data.begin(), data.end()); |
106 | > | if (!sorted) sort(data_.begin(), data_.end()); |
107 | ||
108 | // Calculate coefficients for the tridiagonal system: store | |
109 | // sub-diagonal in B, diagonal in D, difference quotient in C. | |
110 | ||
111 | < | b[0] = data[1].first - data[0].first; |
112 | < | c[0] = (data[1].second - data[0].second) / b[0]; |
111 | > | b[0] = data_[1].first - data_[0].first; |
112 | > | c[0] = (data_[1].second - data_[0].second) / b[0]; |
113 | ||
114 | if (n == 2) { | |
115 | ||
116 | // Assume the derivatives at both endpoints are zero. Another | |
117 | // assumption could be made to have a linear interpolant between | |
118 | // the two points. In that case, the b coefficients below would be | |
119 | < | // (data[1].second - data[0].second) / (data[1].first - data[0].first) |
119 | > | // (data_[1].second - data_[0].second) / (data_[1].first - data_[0].first) |
120 | // and the c and d coefficients would both be zero. | |
121 | b[0] = 0.0; | |
122 | < | c[0] = -3.0 * pow((data[1].second - data[0].second) / |
123 | < | (data[1].first-data[0].first), 2); |
124 | < | d[0] = -2.0 * pow((data[1].second - data[0].second) / |
125 | < | (data[1].first-data[0].first), 3); |
122 | > | c[0] = -3.0 * pow((data_[1].second - data_[0].second) / |
123 | > | (data_[1].first-data_[0].first), 2); |
124 | > | d[0] = -2.0 * pow((data_[1].second - data_[0].second) / |
125 | > | (data_[1].first-data_[0].first), 3); |
126 | b[1] = b[0]; | |
127 | c[1] = 0.0; | |
128 | d[1] = 0.0; | |
129 | < | dx = 1.0 / (data[1].first - data[0].first); |
129 | > | dx = 1.0 / (data_[1].first - data_[0].first); |
130 | isUniform = true; | |
131 | generated = true; | |
132 | return; | |
# | Line 132 | Line 135 | void CubicSpline::generate() { | |
135 | d[0] = 2.0 * b[0]; | |
136 | ||
137 | for (int i = 1; i < n-1; i++) { | |
138 | < | b[i] = data[i+1].first - data[i].first; |
138 | > | b[i] = data_[i+1].first - data_[i].first; |
139 | if ( fabs( b[i] - b[0] ) / b[0] > 1.0e-5) isUniform = false; | |
140 | < | c[i] = (data[i+1].second - data[i].second) / b[i]; |
140 | > | c[i] = (data_[i+1].second - data_[i].second) / b[i]; |
141 | d[i] = 2.0 * (b[i] + b[i-1]); | |
142 | } | |
143 | ||
144 | d[n-1] = 2.0 * b[n-2]; | |
145 | ||
146 | // Calculate estimates for the end slopes using polynomials | |
147 | < | // that interpolate the data nearest the end. |
147 | > | // that interpolate the data_ nearest the end. |
148 | ||
149 | fp1 = c[0] - b[0]*(c[1] - c[0])/(b[0] + b[1]); | |
150 | if (n > 3) fp1 = fp1 + b[0]*((b[0] + b[1]) * (c[2] - c[1]) / | |
151 | (b[1] + b[2]) - | |
152 | < | c[1] + c[0]) / (data[3].first - data[0].first); |
152 | > | c[1] + c[0]) / (data_[3].first - data_[0].first); |
153 | ||
154 | fpn = c[n-2] + b[n-2]*(c[n-2] - c[n-3])/(b[n-3] + b[n-2]); | |
155 | ||
156 | if (n > 3) fpn = fpn + b[n-2] * | |
157 | (c[n-2] - c[n-3] - (b[n-3] + b[n-2]) * | |
158 | < | (c[n-3] - c[n-4])/(b[n-3] + b[n-4]))/(data[n-1].first - data[n-4].first); |
158 | > | (c[n-3] - c[n-4])/(b[n-3] + b[n-4]))/(data_[n-1].first - data_[n-4].first); |
159 | ||
160 | ||
161 | // Calculate the right hand side and store it in C. | |
# | Line 178 | Line 181 | void CubicSpline::generate() { | |
181 | // Calculate the coefficients defining the spline. | |
182 | ||
183 | for (int i = 0; i < n-1; i++) { | |
184 | < | h = data[i+1].first - data[i].first; |
184 | > | h = data_[i+1].first - data_[i].first; |
185 | d[i] = (c[i+1] - c[i]) / (3.0 * h); | |
186 | < | b[i] = (data[i+1].second - data[i].second)/h - h * (c[i] + h * d[i]); |
186 | > | b[i] = (data_[i+1].second - data_[i].second)/h - h * (c[i] + h * d[i]); |
187 | } | |
188 | ||
189 | b[n-1] = b[n-2] + h * (2.0 * c[n-2] + h * 3.0 * d[n-2]); | |
190 | ||
191 | < | if (isUniform) dx = 1.0 / (data[1].first - data[0].first); |
191 | > | if (isUniform) dx = 1.0 / (data_[1].first - data_[0].first); |
192 | ||
193 | generated = true; | |
194 | return; | |
# | Line 202 | Line 205 | RealType CubicSpline::getValueAt(RealType t) { | |
205 | if (!generated) generate(); | |
206 | RealType dt; | |
207 | ||
208 | < | if ( t < data[0].first || t > data[n-1].first ) { |
208 | > | if ( t < data_[0].first || t > data_[n-1].first ) { |
209 | sprintf( painCave.errMsg, | |
210 | "CubicSpline::getValueAt was passed a value outside the range of the spline!\n"); | |
211 | painCave.severity = OPENMD_ERROR; | |
# | Line 217 | Line 220 | RealType CubicSpline::getValueAt(RealType t) { | |
220 | ||
221 | if (isUniform) { | |
222 | ||
223 | < | j = max(0, min(n-1, int((t - data[0].first) * dx))); |
223 | > | j = max(0, min(n-1, int((t - data_[0].first) * dx))); |
224 | ||
225 | } else { | |
226 | ||
227 | j = n-1; | |
228 | ||
229 | for (int i = 0; i < n; i++) { | |
230 | < | if ( t < data[i].first ) { |
230 | > | if ( t < data_[i].first ) { |
231 | j = i-1; | |
232 | break; | |
233 | } | |
# | Line 233 | Line 236 | RealType CubicSpline::getValueAt(RealType t) { | |
236 | ||
237 | // Evaluate the cubic polynomial. | |
238 | ||
239 | < | dt = t - data[j].first; |
240 | < | return data[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
239 | > | dt = t - data_[j].first; |
240 | > | return data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
241 | ||
242 | } | |
243 | ||
# | Line 250 | Line 253 | pair<RealType, RealType> CubicSpline::getValueAndDeriv | |
253 | if (!generated) generate(); | |
254 | RealType dt; | |
255 | ||
256 | < | if ( t < data.front().first || t > data.back().first ) { |
256 | > | if ( t < data_.front().first || t > data_.back().first ) { |
257 | sprintf( painCave.errMsg, | |
258 | "CubicSpline::getValueAndDerivativeAt was passed a value outside the range of the spline!\n"); | |
259 | painCave.severity = OPENMD_ERROR; | |
# | Line 265 | Line 268 | pair<RealType, RealType> CubicSpline::getValueAndDeriv | |
268 | ||
269 | if (isUniform) { | |
270 | ||
271 | < | j = max(0, min(n-1, int((t - data[0].first) * dx))); |
271 | > | j = max(0, min(n-1, int((t - data_[0].first) * dx))); |
272 | ||
273 | } else { | |
274 | ||
275 | j = n-1; | |
276 | ||
277 | for (int i = 0; i < n; i++) { | |
278 | < | if ( t < data[i].first ) { |
278 | > | if ( t < data_[i].first ) { |
279 | j = i-1; | |
280 | break; | |
281 | } | |
# | Line 281 | Line 284 | pair<RealType, RealType> CubicSpline::getValueAndDeriv | |
284 | ||
285 | // Evaluate the cubic polynomial. | |
286 | ||
287 | < | dt = t - data[j].first; |
287 | > | dt = t - data_[j].first; |
288 | ||
289 | < | RealType yval = data[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
289 | > | RealType yval = data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
290 | RealType dydx = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]); | |
291 | ||
292 | return make_pair(yval, dydx); |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |