| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 40 | */ | 
| 41 |  | 
| 42 | #include "math/CubicSpline.hpp" | 
| 43 | #include "utils/simError.h" | 
| 44 | #include <cmath> | 
| 45 | #include <algorithm> | 
| 46 | #include <iostream> | 
| 47 |  | 
| 48 | using namespace OpenMD; | 
| 49 | using namespace std; | 
| 50 |  | 
| 51 | CubicSpline::CubicSpline() : generated(false), isUniform(true) {} | 
| 52 |  | 
| 53 | void CubicSpline::addPoint(RealType xp, RealType yp) { | 
| 54 | data.push_back(make_pair(xp, yp)); | 
| 55 | } | 
| 56 |  | 
| 57 | void CubicSpline::addPoints(const vector<RealType>& xps, | 
| 58 | const vector<RealType>& yps) { | 
| 59 |  | 
| 60 | if (xps.size() != yps.size()) { | 
| 61 | printf( painCave.errMsg, | 
| 62 | "CubicSpline::addPoints was passed vectors of different length!\n"); | 
| 63 | painCave.severity = OPENMD_ERROR; | 
| 64 | painCave.isFatal = 1; | 
| 65 | simError(); | 
| 66 | } | 
| 67 |  | 
| 68 | for (int i = 0; i < xps.size(); i++) | 
| 69 | data.push_back(make_pair(xps[i], yps[i])); | 
| 70 | } | 
| 71 |  | 
| 72 | void CubicSpline::generate() { | 
| 73 | // Calculate coefficients defining a smooth cubic interpolatory spline. | 
| 74 | // | 
| 75 | // class values constructed: | 
| 76 | //   n   = number of data points. | 
| 77 | //   x   = vector of independent variable values | 
| 78 | //   y   = vector of dependent variable values | 
| 79 | //   b   = vector of S'(x[i]) values. | 
| 80 | //   c   = vector of S"(x[i])/2 values. | 
| 81 | //   d   = vector of S'''(x[i]+)/6 values (i < n). | 
| 82 | // Local variables: | 
| 83 |  | 
| 84 | RealType fp1, fpn, h, p; | 
| 85 |  | 
| 86 | // make sure the sizes match | 
| 87 |  | 
| 88 | n = data.size(); | 
| 89 | x.resize(n); | 
| 90 | y.resize(n); | 
| 91 | b.resize(n); | 
| 92 | c.resize(n); | 
| 93 | d.resize(n); | 
| 94 |  | 
| 95 | // make sure we are monotonically increasing in x: | 
| 96 |  | 
| 97 | bool sorted = true; | 
| 98 |  | 
| 99 | for (int i = 1; i < n; i++) { | 
| 100 | if ( (data[i].first - data[i-1].first ) <= 0.0 ) sorted = false; | 
| 101 | } | 
| 102 |  | 
| 103 | // sort if necessary | 
| 104 |  | 
| 105 | if (!sorted) sort(data.begin(), data.end()); | 
| 106 |  | 
| 107 | // Copy spline data out to separate arrays: | 
| 108 |  | 
| 109 | for (int i = 0; i < n; i++) { | 
| 110 | x[i] = data[i].first; | 
| 111 | y[i] = data[i].second; | 
| 112 | } | 
| 113 |  | 
| 114 | // Calculate coefficients for the tridiagonal system: store | 
| 115 | // sub-diagonal in B, diagonal in D, difference quotient in C. | 
| 116 |  | 
| 117 | b[0] = data[1].first - data[0].first; | 
| 118 | c[0] = (data[1].second - data[0].second) / b[0]; | 
| 119 |  | 
| 120 | if (n == 2) { | 
| 121 |  | 
| 122 | // Assume the derivatives at both endpoints are zero. Another | 
| 123 | // assumption could be made to have a linear interpolant between | 
| 124 | // the two points.  In that case, the b coefficients below would be | 
| 125 | // (data[1].second - data[0].second) / (data[1].first - data[0].first) | 
| 126 | // and the c and d coefficients would both be zero. | 
| 127 | b[0] = 0.0; | 
| 128 | c[0] = -3.0 * pow((data[1].second - data[0].second) / | 
| 129 | (data[1].first-data[0].first), 2); | 
| 130 | d[0] = -2.0 * pow((data[1].second - data[0].second) / | 
| 131 | (data[1].first-data[0].first), 3); | 
| 132 | b[1] = b[0]; | 
| 133 | c[1] = 0.0; | 
| 134 | d[1] = 0.0; | 
| 135 | dx = 1.0 / (data[1].first - data[0].first); | 
| 136 | isUniform = true; | 
| 137 | generated = true; | 
| 138 | return; | 
| 139 | } | 
| 140 |  | 
| 141 | d[0] = 2.0 * b[0]; | 
| 142 |  | 
| 143 | for (int i = 1; i < n-1; i++) { | 
| 144 | b[i] = data[i+1].first - data[i].first; | 
| 145 | if ( fabs( b[i] - b[0] ) / b[0] > 1.0e-5) isUniform = false; | 
| 146 | c[i] = (data[i+1].second - data[i].second) / b[i]; | 
| 147 | d[i] = 2.0 * (b[i] + b[i-1]); | 
| 148 | } | 
| 149 |  | 
| 150 | d[n-1] = 2.0 * b[n-2]; | 
| 151 |  | 
| 152 | // Calculate estimates for the end slopes using polynomials | 
| 153 | // that interpolate the data nearest the end. | 
| 154 |  | 
| 155 | fp1 = c[0] - b[0]*(c[1] - c[0])/(b[0] + b[1]); | 
| 156 | if (n > 3) fp1 = fp1 + b[0]*((b[0] + b[1]) * (c[2] - c[1]) / | 
| 157 | (b[1] + b[2]) - | 
| 158 | c[1] + c[0]) / (data[3].first - data[0].first); | 
| 159 |  | 
| 160 | fpn = c[n-2] + b[n-2]*(c[n-2] - c[n-3])/(b[n-3] + b[n-2]); | 
| 161 |  | 
| 162 | if (n > 3)  fpn = fpn + b[n-2] * | 
| 163 | (c[n-2] - c[n-3] - (b[n-3] + b[n-2]) * | 
| 164 | (c[n-3] - c[n-4])/(b[n-3] + b[n-4]))/(data[n-1].first - data[n-4].first); | 
| 165 |  | 
| 166 |  | 
| 167 | // Calculate the right hand side and store it in C. | 
| 168 |  | 
| 169 | c[n-1] = 3.0 * (fpn - c[n-2]); | 
| 170 | for (int i = n-2; i > 0; i--) | 
| 171 | c[i] = 3.0 * (c[i] - c[i-1]); | 
| 172 | c[0] = 3.0 * (c[0] - fp1); | 
| 173 |  | 
| 174 | // Solve the tridiagonal system. | 
| 175 |  | 
| 176 | for (int k = 1; k < n; k++) { | 
| 177 | p = b[k-1] / d[k-1]; | 
| 178 | d[k] = d[k] - p*b[k-1]; | 
| 179 | c[k] = c[k] - p*c[k-1]; | 
| 180 | } | 
| 181 |  | 
| 182 | c[n-1] = c[n-1] / d[n-1]; | 
| 183 |  | 
| 184 | for (int k = n-2; k >= 0; k--) | 
| 185 | c[k] = (c[k] - b[k] * c[k+1]) / d[k]; | 
| 186 |  | 
| 187 | // Calculate the coefficients defining the spline. | 
| 188 |  | 
| 189 | for (int i = 0; i < n-1; i++) { | 
| 190 | h = data[i+1].first - data[i].first; | 
| 191 | d[i] = (c[i+1] - c[i]) / (3.0 * h); | 
| 192 | b[i] = (data[i+1].second - data[i].second)/h - h * (c[i] + h * d[i]); | 
| 193 | } | 
| 194 |  | 
| 195 | b[n-1] = b[n-2] + h * (2.0 * c[n-2] + h * 3.0 * d[n-2]); | 
| 196 |  | 
| 197 | if (isUniform) dx = 1.0 / (data[1].first - data[0].first); | 
| 198 |  | 
| 199 | generated = true; | 
| 200 | return; | 
| 201 | } | 
| 202 |  | 
| 203 | RealType CubicSpline::getValueAt(RealType t) { | 
| 204 | // Evaluate the spline at t using coefficients | 
| 205 | // | 
| 206 | // Input parameters | 
| 207 | //   t = point where spline is to be evaluated. | 
| 208 | // Output: | 
| 209 | //   value of spline at t. | 
| 210 |  | 
| 211 | if (!generated) generate(); | 
| 212 | RealType dt; | 
| 213 |  | 
| 214 | if ( t < data[0].first || t > data[n-1].first ) { | 
| 215 | sprintf( painCave.errMsg, | 
| 216 | "CubicSpline::getValueAt was passed a value outside the range of the spline!\n"); | 
| 217 | painCave.severity = OPENMD_ERROR; | 
| 218 | painCave.isFatal = 1; | 
| 219 | simError(); | 
| 220 | } | 
| 221 |  | 
| 222 | //  Find the interval ( x[j], x[j+1] ) that contains or is nearest | 
| 223 | //  to t. | 
| 224 |  | 
| 225 | int j; | 
| 226 |  | 
| 227 | if (isUniform) { | 
| 228 |  | 
| 229 | j = max(0, min(n-1, int((t - data[0].first) * dx))); | 
| 230 |  | 
| 231 | } else { | 
| 232 |  | 
| 233 | j = n-1; | 
| 234 |  | 
| 235 | for (int i = 0; i < n; i++) { | 
| 236 | if ( t < data[i].first ) { | 
| 237 | j = i-1; | 
| 238 | break; | 
| 239 | } | 
| 240 | } | 
| 241 | } | 
| 242 |  | 
| 243 | //  Evaluate the cubic polynomial. | 
| 244 |  | 
| 245 | dt = t - data[j].first; | 
| 246 | return data[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); | 
| 247 |  | 
| 248 | } | 
| 249 |  | 
| 250 |  | 
| 251 | pair<RealType, RealType> CubicSpline::getValueAndDerivativeAt(RealType t) { | 
| 252 | // Evaluate the spline and first derivative at t using coefficients | 
| 253 | // | 
| 254 | // Input parameters | 
| 255 | //   t = point where spline is to be evaluated. | 
| 256 | // Output: | 
| 257 | //   pair containing value of spline at t and first derivative at t | 
| 258 |  | 
| 259 | if (!generated) generate(); | 
| 260 | RealType dt; | 
| 261 |  | 
| 262 | if ( t < data.front().first || t > data.back().first ) { | 
| 263 | sprintf( painCave.errMsg, | 
| 264 | "CubicSpline::getValueAndDerivativeAt was passed a value outside the range of the spline!\n"); | 
| 265 | painCave.severity = OPENMD_ERROR; | 
| 266 | painCave.isFatal = 1; | 
| 267 | simError(); | 
| 268 | } | 
| 269 |  | 
| 270 | //  Find the interval ( x[j], x[j+1] ) that contains or is nearest | 
| 271 | //  to t. | 
| 272 |  | 
| 273 | int j; | 
| 274 |  | 
| 275 | if (isUniform) { | 
| 276 |  | 
| 277 | j = max(0, min(n-1, int((t - data[0].first) * dx))); | 
| 278 |  | 
| 279 | } else { | 
| 280 |  | 
| 281 | j = n-1; | 
| 282 |  | 
| 283 | for (int i = 0; i < n; i++) { | 
| 284 | if ( t < data[i].first ) { | 
| 285 | j = i-1; | 
| 286 | break; | 
| 287 | } | 
| 288 | } | 
| 289 | } | 
| 290 |  | 
| 291 | //  Evaluate the cubic polynomial. | 
| 292 |  | 
| 293 | dt = t - data[j].first; | 
| 294 |  | 
| 295 | RealType yval = data[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); | 
| 296 | RealType dydx = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]); | 
| 297 |  | 
| 298 | return make_pair(yval, dydx); | 
| 299 | } |