| 43 |  | #include "utils/simError.h" | 
| 44 |  | #include <cmath> | 
| 45 |  | #include <algorithm> | 
| 46 | – | #include <iostream> | 
| 46 |  |  | 
| 47 |  | using namespace OpenMD; | 
| 48 |  | using namespace std; | 
| 49 |  |  | 
| 50 | < | CubicSpline::CubicSpline() : generated(false), isUniform(true) {} | 
| 50 | > | CubicSpline::CubicSpline() : generated(false), isUniform(true) { | 
| 51 | > | data_.clear(); | 
| 52 | > | } | 
| 53 |  |  | 
| 54 | < | void CubicSpline::addPoint(RealType xp, RealType yp) { | 
| 55 | < | data.push_back(make_pair(xp, yp)); | 
| 54 | > | void CubicSpline::addPoint(const RealType xp, const RealType yp) { | 
| 55 | > | data_.push_back(make_pair(xp, yp)); | 
| 56 |  | } | 
| 57 |  |  | 
| 58 |  | void CubicSpline::addPoints(const vector<RealType>& xps, | 
| 67 |  | } | 
| 68 |  |  | 
| 69 |  | for (int i = 0; i < xps.size(); i++) | 
| 70 | < | data.push_back(make_pair(xps[i], yps[i])); | 
| 70 | > | data_.push_back(make_pair(xps[i], yps[i])); | 
| 71 |  | } | 
| 72 |  |  | 
| 73 |  | void CubicSpline::generate() { | 
| 74 |  | // Calculate coefficients defining a smooth cubic interpolatory spline. | 
| 75 |  | // | 
| 76 |  | // class values constructed: | 
| 77 | < | //   n   = number of data points. | 
| 77 | > | //   n   = number of data_ points. | 
| 78 |  | //   x   = vector of independent variable values | 
| 79 |  | //   y   = vector of dependent variable values | 
| 80 |  | //   b   = vector of S'(x[i]) values. | 
| 81 |  | //   c   = vector of S"(x[i])/2 values. | 
| 82 |  | //   d   = vector of S'''(x[i]+)/6 values (i < n). | 
| 83 |  | // Local variables: | 
| 84 | < |  | 
| 84 | > |  | 
| 85 |  | RealType fp1, fpn, h, p; | 
| 86 |  |  | 
| 87 |  | // make sure the sizes match | 
| 88 |  |  | 
| 89 | < | n = data.size(); | 
| 89 | < | x.resize(n); | 
| 90 | < | y.resize(n); | 
| 89 | > | n = data_.size(); | 
| 90 |  | b.resize(n); | 
| 91 |  | c.resize(n); | 
| 92 |  | d.resize(n); | 
| 96 |  | bool sorted = true; | 
| 97 |  |  | 
| 98 |  | for (int i = 1; i < n; i++) { | 
| 99 | < | if ( (data[i].first - data[i-1].first ) <= 0.0 ) sorted = false; | 
| 99 | > | if ( (data_[i].first - data_[i-1].first ) <= 0.0 ) sorted = false; | 
| 100 |  | } | 
| 101 |  |  | 
| 102 |  | // sort if necessary | 
| 103 |  |  | 
| 104 | < | if (!sorted) sort(data.begin(), data.end()); | 
| 104 | > | if (!sorted) sort(data_.begin(), data_.end()); | 
| 105 |  |  | 
| 107 | – | // Copy spline data out to separate arrays: | 
| 108 | – |  | 
| 109 | – | for (int i = 0; i < n; i++) { | 
| 110 | – | x[i] = data[i].first; | 
| 111 | – | y[i] = data[i].second; | 
| 112 | – | } | 
| 113 | – |  | 
| 106 |  | // Calculate coefficients for the tridiagonal system: store | 
| 107 |  | // sub-diagonal in B, diagonal in D, difference quotient in C. | 
| 108 |  |  | 
| 109 | < | b[0] = data[1].first - data[0].first; | 
| 110 | < | c[0] = (data[1].second - data[0].second) / b[0]; | 
| 109 | > | b[0] = data_[1].first - data_[0].first; | 
| 110 | > | c[0] = (data_[1].second - data_[0].second) / b[0]; | 
| 111 |  |  | 
| 112 |  | if (n == 2) { | 
| 113 |  |  | 
| 114 |  | // Assume the derivatives at both endpoints are zero. Another | 
| 115 |  | // assumption could be made to have a linear interpolant between | 
| 116 |  | // the two points.  In that case, the b coefficients below would be | 
| 117 | < | // (data[1].second - data[0].second) / (data[1].first - data[0].first) | 
| 117 | > | // (data_[1].second - data_[0].second) / (data_[1].first - data_[0].first) | 
| 118 |  | // and the c and d coefficients would both be zero. | 
| 119 |  | b[0] = 0.0; | 
| 120 | < | c[0] = -3.0 * pow((data[1].second - data[0].second) / | 
| 121 | < | (data[1].first-data[0].first), 2); | 
| 122 | < | d[0] = -2.0 * pow((data[1].second - data[0].second) / | 
| 123 | < | (data[1].first-data[0].first), 3); | 
| 120 | > | c[0] = -3.0 * pow((data_[1].second - data_[0].second) / | 
| 121 | > | (data_[1].first-data_[0].first), 2); | 
| 122 | > | d[0] = -2.0 * pow((data_[1].second - data_[0].second) / | 
| 123 | > | (data_[1].first-data_[0].first), 3); | 
| 124 |  | b[1] = b[0]; | 
| 125 |  | c[1] = 0.0; | 
| 126 |  | d[1] = 0.0; | 
| 127 | < | dx = 1.0 / (data[1].first - data[0].first); | 
| 127 | > | dx = 1.0 / (data_[1].first - data_[0].first); | 
| 128 |  | isUniform = true; | 
| 129 |  | generated = true; | 
| 130 |  | return; | 
| 133 |  | d[0] = 2.0 * b[0]; | 
| 134 |  |  | 
| 135 |  | for (int i = 1; i < n-1; i++) { | 
| 136 | < | b[i] = data[i+1].first - data[i].first; | 
| 136 | > | b[i] = data_[i+1].first - data_[i].first; | 
| 137 |  | if ( fabs( b[i] - b[0] ) / b[0] > 1.0e-5) isUniform = false; | 
| 138 | < | c[i] = (data[i+1].second - data[i].second) / b[i]; | 
| 138 | > | c[i] = (data_[i+1].second - data_[i].second) / b[i]; | 
| 139 |  | d[i] = 2.0 * (b[i] + b[i-1]); | 
| 140 |  | } | 
| 141 |  |  | 
| 142 |  | d[n-1] = 2.0 * b[n-2]; | 
| 143 |  |  | 
| 144 |  | // Calculate estimates for the end slopes using polynomials | 
| 145 | < | // that interpolate the data nearest the end. | 
| 145 | > | // that interpolate the data_ nearest the end. | 
| 146 |  |  | 
| 147 |  | fp1 = c[0] - b[0]*(c[1] - c[0])/(b[0] + b[1]); | 
| 148 |  | if (n > 3) fp1 = fp1 + b[0]*((b[0] + b[1]) * (c[2] - c[1]) / | 
| 149 |  | (b[1] + b[2]) - | 
| 150 | < | c[1] + c[0]) / (data[3].first - data[0].first); | 
| 150 | > | c[1] + c[0]) / (data_[3].first - data_[0].first); | 
| 151 |  |  | 
| 152 |  | fpn = c[n-2] + b[n-2]*(c[n-2] - c[n-3])/(b[n-3] + b[n-2]); | 
| 153 |  |  | 
| 154 |  | if (n > 3)  fpn = fpn + b[n-2] * | 
| 155 |  | (c[n-2] - c[n-3] - (b[n-3] + b[n-2]) * | 
| 156 | < | (c[n-3] - c[n-4])/(b[n-3] + b[n-4]))/(data[n-1].first - data[n-4].first); | 
| 156 | > | (c[n-3] - c[n-4])/(b[n-3] + b[n-4]))/(data_[n-1].first - data_[n-4].first); | 
| 157 |  |  | 
| 158 |  |  | 
| 159 |  | // Calculate the right hand side and store it in C. | 
| 179 |  | // Calculate the coefficients defining the spline. | 
| 180 |  |  | 
| 181 |  | for (int i = 0; i < n-1; i++) { | 
| 182 | < | h = data[i+1].first - data[i].first; | 
| 182 | > | h = data_[i+1].first - data_[i].first; | 
| 183 |  | d[i] = (c[i+1] - c[i]) / (3.0 * h); | 
| 184 | < | b[i] = (data[i+1].second - data[i].second)/h - h * (c[i] + h * d[i]); | 
| 184 | > | b[i] = (data_[i+1].second - data_[i].second)/h - h * (c[i] + h * d[i]); | 
| 185 |  | } | 
| 186 |  |  | 
| 187 |  | b[n-1] = b[n-2] + h * (2.0 * c[n-2] + h * 3.0 * d[n-2]); | 
| 188 |  |  | 
| 189 | < | if (isUniform) dx = 1.0 / (data[1].first - data[0].first); | 
| 189 | > | if (isUniform) dx = 1.0 / (data_[1].first - data_[0].first); | 
| 190 |  |  | 
| 191 |  | generated = true; | 
| 192 |  | return; | 
| 203 |  | if (!generated) generate(); | 
| 204 |  | RealType dt; | 
| 205 |  |  | 
| 206 | < | if ( t < data[0].first || t > data[n-1].first ) { | 
| 206 | > | if ( t < data_[0].first || t > data_[n-1].first ) { | 
| 207 |  | sprintf( painCave.errMsg, | 
| 208 |  | "CubicSpline::getValueAt was passed a value outside the range of the spline!\n"); | 
| 209 |  | painCave.severity = OPENMD_ERROR; | 
| 218 |  |  | 
| 219 |  | if (isUniform) { | 
| 220 |  |  | 
| 221 | < | j = max(0, min(n-1, int((t - data[0].first) * dx))); | 
| 221 | > | j = max(0, min(n-1, int((t - data_[0].first) * dx))); | 
| 222 |  |  | 
| 223 |  | } else { | 
| 224 |  |  | 
| 225 |  | j = n-1; | 
| 226 |  |  | 
| 227 |  | for (int i = 0; i < n; i++) { | 
| 228 | < | if ( t < data[i].first ) { | 
| 228 | > | if ( t < data_[i].first ) { | 
| 229 |  | j = i-1; | 
| 230 |  | break; | 
| 231 |  | } | 
| 234 |  |  | 
| 235 |  | //  Evaluate the cubic polynomial. | 
| 236 |  |  | 
| 237 | < | dt = t - data[j].first; | 
| 238 | < | return data[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); | 
| 237 | > | dt = t - data_[j].first; | 
| 238 | > | return data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); | 
| 239 |  |  | 
| 240 |  | } | 
| 241 |  |  | 
| 251 |  | if (!generated) generate(); | 
| 252 |  | RealType dt; | 
| 253 |  |  | 
| 254 | < | if ( t < data.front().first || t > data.back().first ) { | 
| 254 | > | if ( t < data_.front().first || t > data_.back().first ) { | 
| 255 |  | sprintf( painCave.errMsg, | 
| 256 |  | "CubicSpline::getValueAndDerivativeAt was passed a value outside the range of the spline!\n"); | 
| 257 |  | painCave.severity = OPENMD_ERROR; | 
| 266 |  |  | 
| 267 |  | if (isUniform) { | 
| 268 |  |  | 
| 269 | < | j = max(0, min(n-1, int((t - data[0].first) * dx))); | 
| 269 | > | j = max(0, min(n-1, int((t - data_[0].first) * dx))); | 
| 270 |  |  | 
| 271 |  | } else { | 
| 272 |  |  | 
| 273 |  | j = n-1; | 
| 274 |  |  | 
| 275 |  | for (int i = 0; i < n; i++) { | 
| 276 | < | if ( t < data[i].first ) { | 
| 276 | > | if ( t < data_[i].first ) { | 
| 277 |  | j = i-1; | 
| 278 |  | break; | 
| 279 |  | } | 
| 282 |  |  | 
| 283 |  | //  Evaluate the cubic polynomial. | 
| 284 |  |  | 
| 285 | < | dt = t - data[j].first; | 
| 285 | > | dt = t - data_[j].first; | 
| 286 |  |  | 
| 287 | < | RealType yval = data[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); | 
| 287 | > | RealType yval = data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); | 
| 288 |  | RealType dydx = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]); | 
| 289 |  |  | 
| 290 |  | return make_pair(yval, dydx); |