| 35 |  | * | 
| 36 |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | < | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | < | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 38 | > | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | > | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | > | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 42 |  |  | 
| 43 |  | #include "math/CubicSpline.hpp" | 
| 43 | – | #include "utils/simError.h" | 
| 44 |  | #include <cmath> | 
| 45 | + | #include <cassert> | 
| 46 |  | #include <cstdio> | 
| 47 |  | #include <algorithm> | 
| 48 |  |  | 
| 60 |  | void CubicSpline::addPoints(const vector<RealType>& xps, | 
| 61 |  | const vector<RealType>& yps) { | 
| 62 |  |  | 
| 63 | < | if (xps.size() != yps.size()) { | 
| 64 | < | printf( painCave.errMsg, | 
| 65 | < | "CubicSpline::addPoints was passed vectors of different length!\n"); | 
| 65 | < | painCave.severity = OPENMD_ERROR; | 
| 66 | < | painCave.isFatal = 1; | 
| 67 | < | simError(); | 
| 68 | < | } | 
| 69 | < |  | 
| 70 | < | for (int i = 0; i < xps.size(); i++) | 
| 63 | > | assert(xps.size() == yps.size()); | 
| 64 | > |  | 
| 65 | > | for (unsigned int i = 0; i < xps.size(); i++) | 
| 66 |  | data_.push_back(make_pair(xps[i], yps[i])); | 
| 67 |  | } | 
| 68 |  |  | 
| 146 |  | c[1] + c[0]) / (data_[3].first - data_[0].first); | 
| 147 |  |  | 
| 148 |  | fpn = c[n-2] + b[n-2]*(c[n-2] - c[n-3])/(b[n-3] + b[n-2]); | 
| 149 | < |  | 
| 149 | > |  | 
| 150 |  | if (n > 3)  fpn = fpn + b[n-2] * | 
| 151 | < | (c[n-2] - c[n-3] - (b[n-3] + b[n-2]) * | 
| 152 | < | (c[n-3] - c[n-4])/(b[n-3] + b[n-4]))/(data_[n-1].first - data_[n-4].first); | 
| 151 | > | (c[n-2] - c[n-3] - (b[n-3] + b[n-2]) * | 
| 152 | > | (c[n-3] - c[n-4])/(b[n-3] + b[n-4])) / | 
| 153 | > | (data_[n-1].first - data_[n-4].first); | 
| 154 |  |  | 
| 159 | – |  | 
| 155 |  | // Calculate the right hand side and store it in C. | 
| 156 |  |  | 
| 157 |  | c[n-1] = 3.0 * (fpn - c[n-2]); | 
| 188 |  | return; | 
| 189 |  | } | 
| 190 |  |  | 
| 191 | < | RealType CubicSpline::getValueAt(RealType t) { | 
| 191 | > | RealType CubicSpline::getValueAt(const RealType& t) { | 
| 192 |  | // Evaluate the spline at t using coefficients | 
| 193 |  | // | 
| 194 |  | // Input parameters | 
| 197 |  | //   value of spline at t. | 
| 198 |  |  | 
| 199 |  | if (!generated) generate(); | 
| 205 | – | RealType dt; | 
| 200 |  |  | 
| 201 | < | if ( t < data_[0].first || t > data_[n-1].first ) { | 
| 202 | < | sprintf( painCave.errMsg, | 
| 209 | < | "CubicSpline::getValueAt was passed a value outside the range of the spline!\n"); | 
| 210 | < | painCave.severity = OPENMD_ERROR; | 
| 211 | < | painCave.isFatal = 1; | 
| 212 | < | simError(); | 
| 213 | < | } | 
| 201 | > | assert(t > data_.front().first); | 
| 202 | > | assert(t < data_.back().first); | 
| 203 |  |  | 
| 204 |  | //  Find the interval ( x[j], x[j+1] ) that contains or is nearest | 
| 205 |  | //  to t. | 
| 206 |  |  | 
| 218 | – | int j; | 
| 219 | – |  | 
| 207 |  | if (isUniform) { | 
| 208 |  |  | 
| 209 |  | j = max(0, min(n-1, int((t - data_[0].first) * dx))); | 
| 223 |  | //  Evaluate the cubic polynomial. | 
| 224 |  |  | 
| 225 |  | dt = t - data_[j].first; | 
| 226 | < | return data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); | 
| 226 | > | return data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); | 
| 227 | > | } | 
| 228 | > |  | 
| 229 | > |  | 
| 230 | > | void CubicSpline::getValueAt(const RealType& t, RealType& v) { | 
| 231 | > | // Evaluate the spline at t using coefficients | 
| 232 | > | // | 
| 233 | > | // Input parameters | 
| 234 | > | //   t = point where spline is to be evaluated. | 
| 235 | > | // Output: | 
| 236 | > | //   value of spline at t. | 
| 237 | > |  | 
| 238 | > | if (!generated) generate(); | 
| 239 | > |  | 
| 240 | > | assert(t > data_.front().first); | 
| 241 | > | assert(t < data_.back().first); | 
| 242 | > |  | 
| 243 | > | //  Find the interval ( x[j], x[j+1] ) that contains or is nearest | 
| 244 | > | //  to t. | 
| 245 | > |  | 
| 246 | > | if (isUniform) { | 
| 247 | > |  | 
| 248 | > | j = max(0, min(n-1, int((t - data_[0].first) * dx))); | 
| 249 | > |  | 
| 250 | > | } else { | 
| 251 | > |  | 
| 252 | > | j = n-1; | 
| 253 | > |  | 
| 254 | > | for (int i = 0; i < n; i++) { | 
| 255 | > | if ( t < data_[i].first ) { | 
| 256 | > | j = i-1; | 
| 257 | > | break; | 
| 258 | > | } | 
| 259 | > | } | 
| 260 | > | } | 
| 261 |  |  | 
| 262 | + | //  Evaluate the cubic polynomial. | 
| 263 | + |  | 
| 264 | + | dt = t - data_[j].first; | 
| 265 | + | v = data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); | 
| 266 |  | } | 
| 267 |  |  | 
| 268 |  |  | 
| 269 | < | pair<RealType, RealType> CubicSpline::getValueAndDerivativeAt(RealType t) { | 
| 269 | > | pair<RealType, RealType> CubicSpline::getValueAndDerivativeAt(const RealType& t){ | 
| 270 |  | // Evaluate the spline and first derivative at t using coefficients | 
| 271 |  | // | 
| 272 |  | // Input parameters | 
| 275 |  | //   pair containing value of spline at t and first derivative at t | 
| 276 |  |  | 
| 277 |  | if (!generated) generate(); | 
| 253 | – | RealType dt; | 
| 278 |  |  | 
| 279 | < | if ( t < data_.front().first || t > data_.back().first ) { | 
| 280 | < | sprintf( painCave.errMsg, | 
| 257 | < | "CubicSpline::getValueAndDerivativeAt was passed a value outside the range of the spline!\n"); | 
| 258 | < | painCave.severity = OPENMD_ERROR; | 
| 259 | < | painCave.isFatal = 1; | 
| 260 | < | simError(); | 
| 261 | < | } | 
| 279 | > | assert(t > data_.front().first); | 
| 280 | > | assert(t < data_.back().first); | 
| 281 |  |  | 
| 282 |  | //  Find the interval ( x[j], x[j+1] ) that contains or is nearest | 
| 283 |  | //  to t. | 
| 284 |  |  | 
| 266 | – | int j; | 
| 267 | – |  | 
| 285 |  | if (isUniform) { | 
| 286 |  |  | 
| 287 |  | j = max(0, min(n-1, int((t - data_[0].first) * dx))); | 
| 302 |  |  | 
| 303 |  | dt = t - data_[j].first; | 
| 304 |  |  | 
| 305 | < | RealType yval = data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); | 
| 306 | < | RealType dydx = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]); | 
| 307 | < |  | 
| 305 | > | yval = data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); | 
| 306 | > | dydx = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]); | 
| 307 | > |  | 
| 308 |  | return make_pair(yval, dydx); | 
| 309 |  | } | 
| 310 | + |  | 
| 311 | + | void CubicSpline::getValueAndDerivativeAt(const RealType& t, RealType& v, | 
| 312 | + | RealType &dv) { | 
| 313 | + | // Evaluate the spline and first derivative at t using coefficients | 
| 314 | + | // | 
| 315 | + | // Input parameters | 
| 316 | + | //   t = point where spline is to be evaluated. | 
| 317 | + |  | 
| 318 | + | if (!generated) generate(); | 
| 319 | + |  | 
| 320 | + | assert(t > data_.front().first); | 
| 321 | + | assert(t < data_.back().first); | 
| 322 | + |  | 
| 323 | + | //  Find the interval ( x[j], x[j+1] ) that contains or is nearest | 
| 324 | + | //  to t. | 
| 325 | + |  | 
| 326 | + | if (isUniform) { | 
| 327 | + |  | 
| 328 | + | j = max(0, min(n-1, int((t - data_[0].first) * dx))); | 
| 329 | + |  | 
| 330 | + | } else { | 
| 331 | + |  | 
| 332 | + | j = n-1; | 
| 333 | + |  | 
| 334 | + | for (int i = 0; i < n; i++) { | 
| 335 | + | if ( t < data_[i].first ) { | 
| 336 | + | j = i-1; | 
| 337 | + | break; | 
| 338 | + | } | 
| 339 | + | } | 
| 340 | + | } | 
| 341 | + |  | 
| 342 | + | //  Evaluate the cubic polynomial. | 
| 343 | + |  | 
| 344 | + | dt = t - data_[j].first; | 
| 345 | + |  | 
| 346 | + | v = data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); | 
| 347 | + | dv = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]); | 
| 348 | + | } |