| 1 |
tim |
891 |
/* |
| 2 |
|
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
|
|
* |
| 4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
| 6 |
|
|
* redistribute this software in source and binary code form, provided |
| 7 |
|
|
* that the following conditions are met: |
| 8 |
|
|
* |
| 9 |
|
|
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
|
|
* publication of scientific results based in part on use of the |
| 11 |
|
|
* program. An acceptable form of acknowledgement is citation of |
| 12 |
|
|
* the article in which the program was described (Matthew |
| 13 |
|
|
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
|
|
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
|
|
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
|
|
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
|
|
* |
| 18 |
|
|
* 2. Redistributions of source code must retain the above copyright |
| 19 |
|
|
* notice, this list of conditions and the following disclaimer. |
| 20 |
|
|
* |
| 21 |
|
|
* 3. Redistributions in binary form must reproduce the above copyright |
| 22 |
|
|
* notice, this list of conditions and the following disclaimer in the |
| 23 |
|
|
* documentation and/or other materials provided with the |
| 24 |
|
|
* distribution. |
| 25 |
|
|
* |
| 26 |
|
|
* This software is provided "AS IS," without a warranty of any |
| 27 |
|
|
* kind. All express or implied conditions, representations and |
| 28 |
|
|
* warranties, including any implied warranty of merchantability, |
| 29 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
| 30 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
| 31 |
|
|
* be liable for any damages suffered by licensee as a result of |
| 32 |
|
|
* using, modifying or distributing the software or its |
| 33 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
| 34 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
| 35 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
| 36 |
|
|
* damages, however caused and regardless of the theory of liability, |
| 37 |
|
|
* arising out of the use of or inability to use software, even if the |
| 38 |
|
|
* University of Notre Dame has been advised of the possibility of |
| 39 |
|
|
* such damages. |
| 40 |
|
|
*/ |
| 41 |
|
|
|
| 42 |
|
|
/*========================================================================= |
| 43 |
|
|
|
| 44 |
|
|
Program: Visualization Toolkit |
| 45 |
|
|
Module: $RCSfile: LU.hpp,v $ |
| 46 |
|
|
|
| 47 |
|
|
Copyright (c) 1993-2003 Ken Martin, Will Schroeder, Bill Lorensen |
| 48 |
|
|
All rights reserved. |
| 49 |
|
|
|
| 50 |
|
|
Redistribution and use in source and binary forms, with or without |
| 51 |
|
|
modification, are permitted provided that the following conditions are met: |
| 52 |
|
|
|
| 53 |
|
|
* Redistributions of source code must retain the above copyright notice, |
| 54 |
|
|
this list of conditions and the following disclaimer. |
| 55 |
|
|
|
| 56 |
|
|
* Redistributions in binary form must reproduce the above copyright notice, |
| 57 |
|
|
this list of conditions and the following disclaimer in the documentation |
| 58 |
|
|
and/or other materials provided with the distribution. |
| 59 |
|
|
|
| 60 |
|
|
* Neither name of Ken Martin, Will Schroeder, or Bill Lorensen nor the names |
| 61 |
|
|
of any contributors may be used to endorse or promote products derived |
| 62 |
|
|
from this software without specific prior written permission. |
| 63 |
|
|
|
| 64 |
|
|
* Modified source versions must be plainly marked as such, and must not be |
| 65 |
|
|
misrepresented as being the original software. |
| 66 |
|
|
|
| 67 |
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' |
| 68 |
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 69 |
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 70 |
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR |
| 71 |
|
|
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 72 |
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| 73 |
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| 74 |
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| 75 |
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 76 |
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 77 |
|
|
|
| 78 |
|
|
=========================================================================*/ |
| 79 |
|
|
#ifndef MATH_LU_HPP |
| 80 |
|
|
#define MATH_LU_HPP |
| 81 |
|
|
|
| 82 |
|
|
#include "utils/NumericConstant.hpp" |
| 83 |
|
|
|
| 84 |
|
|
namespace oopse { |
| 85 |
|
|
|
| 86 |
|
|
/** |
| 87 |
|
|
* Invert input square matrix A into matrix AI. |
| 88 |
|
|
* @param A input square matrix |
| 89 |
|
|
* @param AI output square matrix |
| 90 |
|
|
* @return true if inverse is computed, otherwise return false |
| 91 |
|
|
* @note A is modified during the inversion |
| 92 |
|
|
*/ |
| 93 |
|
|
template<class MatrixType> |
| 94 |
|
|
bool invertMatrix(MatrixType& A, MatrixType& AI) |
| 95 |
|
|
{ |
| 96 |
|
|
typedef typename MatrixType::ElemType Real; |
| 97 |
|
|
if (A.getNRow() != A.getNCol() || A.getNRow() != AI.getNRow() || A.getNCol() != AI.getNCol()) { |
| 98 |
|
|
return false; |
| 99 |
|
|
} |
| 100 |
|
|
|
| 101 |
|
|
int size = A.getNRow(); |
| 102 |
|
|
int *index=NULL, iScratch[10]; |
| 103 |
|
|
Real *column=NULL, dScratch[10]; |
| 104 |
|
|
|
| 105 |
|
|
// Check on allocation of working vectors |
| 106 |
|
|
// |
| 107 |
|
|
if ( size <= 10 ) { |
| 108 |
|
|
index = iScratch; |
| 109 |
|
|
column = dScratch; |
| 110 |
|
|
} else { |
| 111 |
|
|
index = new int[size]; |
| 112 |
|
|
column = new Real[size]; |
| 113 |
|
|
} |
| 114 |
|
|
|
| 115 |
|
|
bool retVal = invertMatrix(A, AI, size, index, column); |
| 116 |
|
|
|
| 117 |
|
|
if ( size > 10 ) { |
| 118 |
|
|
delete [] index; |
| 119 |
|
|
delete [] column; |
| 120 |
|
|
} |
| 121 |
|
|
|
| 122 |
|
|
return retVal; |
| 123 |
|
|
} |
| 124 |
|
|
|
| 125 |
|
|
/** |
| 126 |
|
|
* Invert input square matrix A into matrix AI (Thread safe versions). |
| 127 |
|
|
* @param A input square matrix |
| 128 |
|
|
* @param AI output square matrix |
| 129 |
|
|
* @param size size of the matrix and temporary arrays |
| 130 |
|
|
* @param tmp1Size temporary array |
| 131 |
|
|
* @param tmp2Size temporary array |
| 132 |
|
|
* @return true if inverse is computed, otherwise return false |
| 133 |
|
|
* @note A is modified during the inversion. |
| 134 |
|
|
*/ |
| 135 |
|
|
|
| 136 |
|
|
template<class MatrixType> |
| 137 |
|
|
bool invertMatrix(MatrixType& A , MatrixType& AI, int size, |
| 138 |
|
|
int *tmp1Size, typename MatrixType::ElemPoinerType tmp2Size) |
| 139 |
|
|
{ |
| 140 |
|
|
if (A.getNRow() != A.getNCol() || A.getNRow() != AI.getNRow() || A.getNCol() != AI.getNCol() || A.getNRow() != size) { |
| 141 |
|
|
return false; |
| 142 |
|
|
} |
| 143 |
|
|
|
| 144 |
|
|
int i, j; |
| 145 |
|
|
|
| 146 |
|
|
// |
| 147 |
|
|
// Factor matrix; then begin solving for inverse one column at a time. |
| 148 |
|
|
// Note: tmp1Size returned value is used later, tmp2Size is just working |
| 149 |
|
|
// memory whose values are not used in LUSolveLinearSystem |
| 150 |
|
|
// |
| 151 |
|
|
if ( LUFactorLinearSystem(A, tmp1Size, size, tmp2Size) == 0 ){ |
| 152 |
|
|
return false; |
| 153 |
|
|
} |
| 154 |
|
|
|
| 155 |
|
|
for ( j=0; j < size; j++ ) { |
| 156 |
|
|
for ( i=0; i < size; i++ ) { |
| 157 |
|
|
tmp2Size[i] = 0.0; |
| 158 |
|
|
} |
| 159 |
|
|
tmp2Size[j] = 1.0; |
| 160 |
|
|
|
| 161 |
|
|
LUSolveLinearSystem(A,tmp1Size,tmp2Size,size); |
| 162 |
|
|
|
| 163 |
|
|
for ( i=0; i < size; i++ ) { |
| 164 |
|
|
AI(i, j) = tmp2Size[i]; |
| 165 |
|
|
} |
| 166 |
|
|
} |
| 167 |
|
|
|
| 168 |
|
|
return true; |
| 169 |
|
|
} |
| 170 |
|
|
|
| 171 |
|
|
/** |
| 172 |
|
|
* Factor linear equations Ax = b using LU decompostion A = LU where L is |
| 173 |
|
|
* lower triangular matrix and U is upper triangular matrix. |
| 174 |
|
|
* @param A input square matrix |
| 175 |
|
|
* @param index pivot indices |
| 176 |
|
|
* @param size size of the matrix and temporary arrays |
| 177 |
|
|
* @param tmpSize temporary array |
| 178 |
|
|
* @return true if inverse is computed, otherwise return false |
| 179 |
|
|
* @note A is modified during the inversion. |
| 180 |
|
|
*/ |
| 181 |
|
|
template<class MatrixType> |
| 182 |
|
|
int LUFactorLinearSystem(MatrixType& A, int *index, int size, |
| 183 |
|
|
typename MatrixType::ElemPoinerType tmpSize) |
| 184 |
|
|
{ |
| 185 |
|
|
typedef typename MatrixType::ElemType Real; |
| 186 |
|
|
int i, j, k; |
| 187 |
|
|
int maxI = 0; |
| 188 |
|
|
Real largest, temp1, temp2, sum; |
| 189 |
|
|
|
| 190 |
|
|
// |
| 191 |
|
|
// Loop over rows to get implicit scaling information |
| 192 |
|
|
// |
| 193 |
|
|
for ( i = 0; i < size; i++ ) { |
| 194 |
|
|
for ( largest = 0.0, j = 0; j < size; j++ ) { |
| 195 |
|
|
if ( (temp2 = fabs(A(i, j))) > largest ) { |
| 196 |
|
|
largest = temp2; |
| 197 |
|
|
} |
| 198 |
|
|
} |
| 199 |
|
|
|
| 200 |
|
|
if ( largest == 0.0 ) { |
| 201 |
|
|
//vtkGenericWarningMacro(<<"Unable to factor linear system"); |
| 202 |
|
|
return 0; |
| 203 |
|
|
} |
| 204 |
|
|
tmpSize[i] = 1.0 / largest; |
| 205 |
|
|
} |
| 206 |
|
|
// |
| 207 |
|
|
// Loop over all columns using Crout's method |
| 208 |
|
|
// |
| 209 |
|
|
for ( j = 0; j < size; j++ ) { |
| 210 |
|
|
for (i = 0; i < j; i++) { |
| 211 |
|
|
sum = A(i, j); |
| 212 |
|
|
for ( k = 0; k < i; k++ ) { |
| 213 |
|
|
sum -= A(i, k) * A(k, j); |
| 214 |
|
|
} |
| 215 |
|
|
A(i, j) = sum; |
| 216 |
|
|
} |
| 217 |
|
|
// |
| 218 |
|
|
// Begin search for largest pivot element |
| 219 |
|
|
// |
| 220 |
|
|
for ( largest = 0.0, i = j; i < size; i++ ) { |
| 221 |
|
|
sum = A(i, j); |
| 222 |
|
|
for ( k = 0; k < j; k++ ) { |
| 223 |
|
|
sum -= A(i, k) * A(k, j); |
| 224 |
|
|
} |
| 225 |
|
|
A(i, j) = sum; |
| 226 |
|
|
|
| 227 |
|
|
if ( (temp1 = tmpSize[i]*fabs(sum)) >= largest ) { |
| 228 |
|
|
largest = temp1; |
| 229 |
|
|
maxI = i; |
| 230 |
|
|
} |
| 231 |
|
|
} |
| 232 |
|
|
// |
| 233 |
|
|
// Check for row interchange |
| 234 |
|
|
// |
| 235 |
|
|
if ( j != maxI ) { |
| 236 |
|
|
for ( k = 0; k < size; k++ ) { |
| 237 |
|
|
temp1 = A(maxI, k); |
| 238 |
|
|
A(maxI, k) = A(j, k); |
| 239 |
|
|
A(j, k) = temp1; |
| 240 |
|
|
} |
| 241 |
|
|
tmpSize[maxI] = tmpSize[j]; |
| 242 |
|
|
} |
| 243 |
|
|
// |
| 244 |
|
|
// Divide by pivot element and perform elimination |
| 245 |
|
|
// |
| 246 |
|
|
index[j] = maxI; |
| 247 |
|
|
|
| 248 |
|
|
if ( fabs(A(j, j)) <= oopse::NumericConstant::epsilon ) { |
| 249 |
|
|
//vtkGenericWarningMacro(<<"Unable to factor linear system"); |
| 250 |
|
|
return false; |
| 251 |
|
|
} |
| 252 |
|
|
|
| 253 |
|
|
if ( j != (size-1) ) { |
| 254 |
|
|
temp1 = 1.0 / A(j, j); |
| 255 |
|
|
for ( i = j + 1; i < size; i++ ) { |
| 256 |
|
|
A(i, j) *= temp1; |
| 257 |
|
|
} |
| 258 |
|
|
} |
| 259 |
|
|
} |
| 260 |
|
|
|
| 261 |
|
|
return 1; |
| 262 |
|
|
} |
| 263 |
|
|
|
| 264 |
|
|
/** |
| 265 |
|
|
* Solve linear equations Ax = b using LU decompostion A = LU where L is |
| 266 |
|
|
* lower triangular matrix and U is upper triangular matrix. |
| 267 |
|
|
* @param A input square matrix |
| 268 |
|
|
* @param index pivot indices |
| 269 |
|
|
* @param size size of the matrix and temporary arrays |
| 270 |
|
|
* @param tmpSize temporary array |
| 271 |
|
|
* @return true if inverse is computed, otherwise return false |
| 272 |
|
|
* @note A=LU and index[] are generated from method LUFactorLinearSystem). |
| 273 |
|
|
* Also, solution vector is written directly over input load vector. |
| 274 |
|
|
*/ |
| 275 |
|
|
template<class MatrixType> |
| 276 |
|
|
void LUSolveLinearSystem(MatrixType& A, int *index, |
| 277 |
|
|
typename MatrixType::ElemPoinerType x, int size) |
| 278 |
|
|
{ |
| 279 |
|
|
typedef typename MatrixType::ElemType Real; |
| 280 |
|
|
int i, j, ii, idx; |
| 281 |
|
|
Real sum; |
| 282 |
|
|
// |
| 283 |
|
|
// Proceed with forward and backsubstitution for L and U |
| 284 |
|
|
// matrices. First, forward substitution. |
| 285 |
|
|
// |
| 286 |
|
|
for ( ii = -1, i = 0; i < size; i++ ) { |
| 287 |
|
|
idx = index[i]; |
| 288 |
|
|
sum = x[idx]; |
| 289 |
|
|
x[idx] = x[i]; |
| 290 |
|
|
|
| 291 |
|
|
if ( ii >= 0 ) { |
| 292 |
|
|
for ( j = ii; j <= (i-1); j++ ) { |
| 293 |
|
|
sum -= A(i, j)*x[j]; |
| 294 |
|
|
} |
| 295 |
|
|
} else if (sum) { |
| 296 |
|
|
ii = i; |
| 297 |
|
|
} |
| 298 |
|
|
|
| 299 |
|
|
x[i] = sum; |
| 300 |
|
|
} |
| 301 |
|
|
// |
| 302 |
|
|
// Now, back substitution |
| 303 |
|
|
// |
| 304 |
|
|
for ( i = size-1; i >= 0; i-- ) { |
| 305 |
|
|
sum = x[i]; |
| 306 |
|
|
for ( j = i + 1; j < size; j++ ) { |
| 307 |
|
|
sum -= A(i, j)*x[j]; |
| 308 |
|
|
} |
| 309 |
|
|
x[i] = sum / A(i, i); |
| 310 |
|
|
} |
| 311 |
|
|
} |
| 312 |
|
|
|
| 313 |
|
|
} |
| 314 |
|
|
|
| 315 |
|
|
#endif |