| 1 |
/* |
| 2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
* |
| 4 |
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
* non-exclusive, royalty free, license to use, modify and |
| 6 |
* redistribute this software in source and binary code form, provided |
| 7 |
* that the following conditions are met: |
| 8 |
* |
| 9 |
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
* publication of scientific results based in part on use of the |
| 11 |
* program. An acceptable form of acknowledgement is citation of |
| 12 |
* the article in which the program was described (Matthew |
| 13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
* |
| 18 |
* 2. Redistributions of source code must retain the above copyright |
| 19 |
* notice, this list of conditions and the following disclaimer. |
| 20 |
* |
| 21 |
* 3. Redistributions in binary form must reproduce the above copyright |
| 22 |
* notice, this list of conditions and the following disclaimer in the |
| 23 |
* documentation and/or other materials provided with the |
| 24 |
* distribution. |
| 25 |
* |
| 26 |
* This software is provided "AS IS," without a warranty of any |
| 27 |
* kind. All express or implied conditions, representations and |
| 28 |
* warranties, including any implied warranty of merchantability, |
| 29 |
* fitness for a particular purpose or non-infringement, are hereby |
| 30 |
* excluded. The University of Notre Dame and its licensors shall not |
| 31 |
* be liable for any damages suffered by licensee as a result of |
| 32 |
* using, modifying or distributing the software or its |
| 33 |
* derivatives. In no event will the University of Notre Dame or its |
| 34 |
* licensors be liable for any lost revenue, profit or data, or for |
| 35 |
* direct, indirect, special, consequential, incidental or punitive |
| 36 |
* damages, however caused and regardless of the theory of liability, |
| 37 |
* arising out of the use of or inability to use software, even if the |
| 38 |
* University of Notre Dame has been advised of the possibility of |
| 39 |
* such damages. |
| 40 |
*/ |
| 41 |
|
| 42 |
/*========================================================================= |
| 43 |
|
| 44 |
Program: Visualization Toolkit |
| 45 |
Module: $RCSfile: LU.hpp,v $ |
| 46 |
|
| 47 |
Copyright (c) 1993-2003 Ken Martin, Will Schroeder, Bill Lorensen |
| 48 |
All rights reserved. |
| 49 |
|
| 50 |
Redistribution and use in source and binary forms, with or without |
| 51 |
modification, are permitted provided that the following conditions are met: |
| 52 |
|
| 53 |
* Redistributions of source code must retain the above copyright notice, |
| 54 |
this list of conditions and the following disclaimer. |
| 55 |
|
| 56 |
* Redistributions in binary form must reproduce the above copyright notice, |
| 57 |
this list of conditions and the following disclaimer in the documentation |
| 58 |
and/or other materials provided with the distribution. |
| 59 |
|
| 60 |
* Neither name of Ken Martin, Will Schroeder, or Bill Lorensen nor the names |
| 61 |
of any contributors may be used to endorse or promote products derived |
| 62 |
from this software without specific prior written permission. |
| 63 |
|
| 64 |
* Modified source versions must be plainly marked as such, and must not be |
| 65 |
misrepresented as being the original software. |
| 66 |
|
| 67 |
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' |
| 68 |
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 69 |
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 70 |
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR |
| 71 |
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 72 |
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| 73 |
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| 74 |
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| 75 |
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 76 |
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 77 |
|
| 78 |
=========================================================================*/ |
| 79 |
#ifndef MATH_LU_HPP |
| 80 |
#define MATH_LU_HPP |
| 81 |
|
| 82 |
#include "utils/NumericConstant.hpp" |
| 83 |
|
| 84 |
namespace oopse { |
| 85 |
|
| 86 |
/** |
| 87 |
* Invert input square matrix A into matrix AI. |
| 88 |
* @param A input square matrix |
| 89 |
* @param AI output square matrix |
| 90 |
* @return true if inverse is computed, otherwise return false |
| 91 |
* @note A is modified during the inversion |
| 92 |
*/ |
| 93 |
template<class MatrixType> |
| 94 |
bool invertMatrix(MatrixType& A, MatrixType& AI) |
| 95 |
{ |
| 96 |
typedef typename MatrixType::ElemType Real; |
| 97 |
if (A.getNRow() != A.getNCol() || A.getNRow() != AI.getNRow() || A.getNCol() != AI.getNCol()) { |
| 98 |
return false; |
| 99 |
} |
| 100 |
|
| 101 |
int size = A.getNRow(); |
| 102 |
int *index=NULL, iScratch[10]; |
| 103 |
Real *column=NULL, dScratch[10]; |
| 104 |
|
| 105 |
// Check on allocation of working vectors |
| 106 |
// |
| 107 |
if ( size <= 10 ) { |
| 108 |
index = iScratch; |
| 109 |
column = dScratch; |
| 110 |
} else { |
| 111 |
index = new int[size]; |
| 112 |
column = new Real[size]; |
| 113 |
} |
| 114 |
|
| 115 |
bool retVal = invertMatrix(A, AI, size, index, column); |
| 116 |
|
| 117 |
if ( size > 10 ) { |
| 118 |
delete [] index; |
| 119 |
delete [] column; |
| 120 |
} |
| 121 |
|
| 122 |
return retVal; |
| 123 |
} |
| 124 |
|
| 125 |
/** |
| 126 |
* Invert input square matrix A into matrix AI (Thread safe versions). |
| 127 |
* @param A input square matrix |
| 128 |
* @param AI output square matrix |
| 129 |
* @param size size of the matrix and temporary arrays |
| 130 |
* @param tmp1Size temporary array |
| 131 |
* @param tmp2Size temporary array |
| 132 |
* @return true if inverse is computed, otherwise return false |
| 133 |
* @note A is modified during the inversion. |
| 134 |
*/ |
| 135 |
|
| 136 |
template<class MatrixType> |
| 137 |
bool invertMatrix(MatrixType& A , MatrixType& AI, int size, |
| 138 |
int *tmp1Size, typename MatrixType::ElemPoinerType tmp2Size) |
| 139 |
{ |
| 140 |
if (A.getNRow() != A.getNCol() || A.getNRow() != AI.getNRow() || A.getNCol() != AI.getNCol() || A.getNRow() != size) { |
| 141 |
return false; |
| 142 |
} |
| 143 |
|
| 144 |
int i, j; |
| 145 |
|
| 146 |
// |
| 147 |
// Factor matrix; then begin solving for inverse one column at a time. |
| 148 |
// Note: tmp1Size returned value is used later, tmp2Size is just working |
| 149 |
// memory whose values are not used in LUSolveLinearSystem |
| 150 |
// |
| 151 |
if ( LUFactorLinearSystem(A, tmp1Size, size, tmp2Size) == 0 ){ |
| 152 |
return false; |
| 153 |
} |
| 154 |
|
| 155 |
for ( j=0; j < size; j++ ) { |
| 156 |
for ( i=0; i < size; i++ ) { |
| 157 |
tmp2Size[i] = 0.0; |
| 158 |
} |
| 159 |
tmp2Size[j] = 1.0; |
| 160 |
|
| 161 |
LUSolveLinearSystem(A,tmp1Size,tmp2Size,size); |
| 162 |
|
| 163 |
for ( i=0; i < size; i++ ) { |
| 164 |
AI(i, j) = tmp2Size[i]; |
| 165 |
} |
| 166 |
} |
| 167 |
|
| 168 |
return true; |
| 169 |
} |
| 170 |
|
| 171 |
/** |
| 172 |
* Factor linear equations Ax = b using LU decompostion A = LU where L is |
| 173 |
* lower triangular matrix and U is upper triangular matrix. |
| 174 |
* @param A input square matrix |
| 175 |
* @param index pivot indices |
| 176 |
* @param size size of the matrix and temporary arrays |
| 177 |
* @param tmpSize temporary array |
| 178 |
* @return true if inverse is computed, otherwise return false |
| 179 |
* @note A is modified during the inversion. |
| 180 |
*/ |
| 181 |
template<class MatrixType> |
| 182 |
int LUFactorLinearSystem(MatrixType& A, int *index, int size, |
| 183 |
typename MatrixType::ElemPoinerType tmpSize) |
| 184 |
{ |
| 185 |
typedef typename MatrixType::ElemType Real; |
| 186 |
int i, j, k; |
| 187 |
int maxI = 0; |
| 188 |
Real largest, temp1, temp2, sum; |
| 189 |
|
| 190 |
// |
| 191 |
// Loop over rows to get implicit scaling information |
| 192 |
// |
| 193 |
for ( i = 0; i < size; i++ ) { |
| 194 |
for ( largest = 0.0, j = 0; j < size; j++ ) { |
| 195 |
if ( (temp2 = fabs(A(i, j))) > largest ) { |
| 196 |
largest = temp2; |
| 197 |
} |
| 198 |
} |
| 199 |
|
| 200 |
if ( largest == 0.0 ) { |
| 201 |
//vtkGenericWarningMacro(<<"Unable to factor linear system"); |
| 202 |
return 0; |
| 203 |
} |
| 204 |
tmpSize[i] = 1.0 / largest; |
| 205 |
} |
| 206 |
// |
| 207 |
// Loop over all columns using Crout's method |
| 208 |
// |
| 209 |
for ( j = 0; j < size; j++ ) { |
| 210 |
for (i = 0; i < j; i++) { |
| 211 |
sum = A(i, j); |
| 212 |
for ( k = 0; k < i; k++ ) { |
| 213 |
sum -= A(i, k) * A(k, j); |
| 214 |
} |
| 215 |
A(i, j) = sum; |
| 216 |
} |
| 217 |
// |
| 218 |
// Begin search for largest pivot element |
| 219 |
// |
| 220 |
for ( largest = 0.0, i = j; i < size; i++ ) { |
| 221 |
sum = A(i, j); |
| 222 |
for ( k = 0; k < j; k++ ) { |
| 223 |
sum -= A(i, k) * A(k, j); |
| 224 |
} |
| 225 |
A(i, j) = sum; |
| 226 |
|
| 227 |
if ( (temp1 = tmpSize[i]*fabs(sum)) >= largest ) { |
| 228 |
largest = temp1; |
| 229 |
maxI = i; |
| 230 |
} |
| 231 |
} |
| 232 |
// |
| 233 |
// Check for row interchange |
| 234 |
// |
| 235 |
if ( j != maxI ) { |
| 236 |
for ( k = 0; k < size; k++ ) { |
| 237 |
temp1 = A(maxI, k); |
| 238 |
A(maxI, k) = A(j, k); |
| 239 |
A(j, k) = temp1; |
| 240 |
} |
| 241 |
tmpSize[maxI] = tmpSize[j]; |
| 242 |
} |
| 243 |
// |
| 244 |
// Divide by pivot element and perform elimination |
| 245 |
// |
| 246 |
index[j] = maxI; |
| 247 |
|
| 248 |
if ( fabs(A(j, j)) <= oopse::NumericConstant::epsilon ) { |
| 249 |
//vtkGenericWarningMacro(<<"Unable to factor linear system"); |
| 250 |
return false; |
| 251 |
} |
| 252 |
|
| 253 |
if ( j != (size-1) ) { |
| 254 |
temp1 = 1.0 / A(j, j); |
| 255 |
for ( i = j + 1; i < size; i++ ) { |
| 256 |
A(i, j) *= temp1; |
| 257 |
} |
| 258 |
} |
| 259 |
} |
| 260 |
|
| 261 |
return 1; |
| 262 |
} |
| 263 |
|
| 264 |
/** |
| 265 |
* Solve linear equations Ax = b using LU decompostion A = LU where L is |
| 266 |
* lower triangular matrix and U is upper triangular matrix. |
| 267 |
* @param A input square matrix |
| 268 |
* @param index pivot indices |
| 269 |
* @param size size of the matrix and temporary arrays |
| 270 |
* @param tmpSize temporary array |
| 271 |
* @return true if inverse is computed, otherwise return false |
| 272 |
* @note A=LU and index[] are generated from method LUFactorLinearSystem). |
| 273 |
* Also, solution vector is written directly over input load vector. |
| 274 |
*/ |
| 275 |
template<class MatrixType> |
| 276 |
void LUSolveLinearSystem(MatrixType& A, int *index, |
| 277 |
typename MatrixType::ElemPoinerType x, int size) |
| 278 |
{ |
| 279 |
typedef typename MatrixType::ElemType Real; |
| 280 |
int i, j, ii, idx; |
| 281 |
Real sum; |
| 282 |
// |
| 283 |
// Proceed with forward and backsubstitution for L and U |
| 284 |
// matrices. First, forward substitution. |
| 285 |
// |
| 286 |
for ( ii = -1, i = 0; i < size; i++ ) { |
| 287 |
idx = index[i]; |
| 288 |
sum = x[idx]; |
| 289 |
x[idx] = x[i]; |
| 290 |
|
| 291 |
if ( ii >= 0 ) { |
| 292 |
for ( j = ii; j <= (i-1); j++ ) { |
| 293 |
sum -= A(i, j)*x[j]; |
| 294 |
} |
| 295 |
} else if (sum) { |
| 296 |
ii = i; |
| 297 |
} |
| 298 |
|
| 299 |
x[i] = sum; |
| 300 |
} |
| 301 |
// |
| 302 |
// Now, back substitution |
| 303 |
// |
| 304 |
for ( i = size-1; i >= 0; i-- ) { |
| 305 |
sum = x[i]; |
| 306 |
for ( j = i + 1; j < size; j++ ) { |
| 307 |
sum -= A(i, j)*x[j]; |
| 308 |
} |
| 309 |
x[i] = sum / A(i, i); |
| 310 |
} |
| 311 |
} |
| 312 |
|
| 313 |
} |
| 314 |
|
| 315 |
#endif |