| 36 |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 |  | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | < | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 39 | > | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | > | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 42 |  |  | 
| 43 |  | /** | 
| 47 |  | * @version 1.0 | 
| 48 |  | */ | 
| 49 |  |  | 
| 50 | < | #ifndef MATH_CHEBYSHEVPOLYNOMIALS_HPP | 
| 51 | < | #define MATH_CHEBYSHEVPOLYNOMIALS_HPP | 
| 50 | > | #ifndef MATH_LEGENDREPOLYNOMIALS_HPP | 
| 51 | > | #define MATH_LEGENDREPOLYNOMIALS_HPP | 
| 52 |  |  | 
| 53 |  | #include <vector> | 
| 54 |  | #include <cassert> | 
| 59 |  |  | 
| 60 |  | /** | 
| 61 |  | * @class LegendrePolynomial | 
| 62 | < | * A collection of Chebyshev Polynomials. | 
| 62 | > | * A collection of Legendre Polynomials. | 
| 63 |  | * @todo document | 
| 64 |  | */ | 
| 65 |  | class LegendrePolynomial { | 
| 67 |  | LegendrePolynomial(int maxPower); | 
| 68 |  | virtual ~LegendrePolynomial() {} | 
| 69 |  | /** | 
| 70 | < | * Calculates the value of the nth Chebyshev Polynomial evaluated at the given x value. | 
| 71 | < | * @return The value of the nth Chebyshev Polynomial evaluates at the given x value | 
| 70 | > | * Calculates the value of the nth Legendre Polynomial evaluated at the given x value. | 
| 71 | > | * @return The value of the nth Legendre Polynomial evaluates at the given x value | 
| 72 |  | * @param n | 
| 73 | < | * @param x the value of the independent variable for the nth Chebyshev Polynomial  function | 
| 73 | > | * @param x the value of the independent variable for the nth Legendre Polynomial  function | 
| 74 |  | */ | 
| 75 |  |  | 
| 76 |  | RealType evaluate(int n, RealType x) { | 
| 79 |  | } | 
| 80 |  |  | 
| 81 |  | /** | 
| 82 | < | * Returns the first derivative of the nth Chebyshev Polynomial. | 
| 83 | < | * @return the first derivative of the nth Chebyshev Polynomial | 
| 82 | > | * Returns the first derivative of the nth Legendre Polynomial. | 
| 83 | > | * @return the first derivative of the nth Legendre Polynomial | 
| 84 |  | * @param n | 
| 85 | < | * @param x the value of the independent variable for the nth Chebyshev Polynomial  function | 
| 85 | > | * @param x the value of the independent variable for the nth Legendre Polynomial  function | 
| 86 |  | */ | 
| 87 |  | RealType evaluateDerivative(int n, RealType x) { | 
| 88 |  | assert (n <= maxPower_ && n >=0); | 
| 90 |  | } | 
| 91 |  |  | 
| 92 |  | /** | 
| 93 | < | * Returns the nth Chebyshev Polynomial | 
| 94 | < | * @return the nth Chebyshev Polynomial | 
| 93 | > | * Returns the nth Legendre Polynomial | 
| 94 | > | * @return the nth Legendre Polynomial | 
| 95 |  | * @param n | 
| 96 |  | */ | 
| 97 |  | const DoublePolynomial& getLegendrePolynomial(int n) const { | 
| 112 |  | }; | 
| 113 |  |  | 
| 114 |  |  | 
| 115 | < | } //end namespace OpenMD | 
| 116 | < | #endif //MATH_CHEBYSHEVPOLYNOMIALS_HPP | 
| 115 | > | } | 
| 116 | > | #endif | 
| 117 |  |  |