| 6 |  | * redistribute this software in source and binary code form, provided | 
| 7 |  | * that the following conditions are met: | 
| 8 |  | * | 
| 9 | < | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | < | *    publication of scientific results based in part on use of the | 
| 11 | < | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | < | *    the article in which the program was described (Matthew | 
| 13 | < | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | < | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | < | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | < | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | < | * | 
| 18 | < | * 2. Redistributions of source code must retain the above copyright | 
| 9 | > | * 1. Redistributions of source code must retain the above copyright | 
| 10 |  | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  | * | 
| 12 | < | * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | > | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 |  | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  | *    documentation and/or other materials provided with the | 
| 15 |  | *    distribution. | 
| 28 |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  | * such damages. | 
| 31 | + | * | 
| 32 | + | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | + | * research, please cite the appropriate papers when you publish your | 
| 34 | + | * work.  Good starting points are: | 
| 35 | + | * | 
| 36 | + | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | + | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | + | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | + | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | + | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 42 |  |  | 
| 43 |  | /** | 
| 47 |  | * @version 1.0 | 
| 48 |  | */ | 
| 49 |  |  | 
| 50 | < | #ifndef MATH_CHEBYSHEVPOLYNOMIALS_HPP | 
| 51 | < | #define MATH_CHEBYSHEVPOLYNOMIALS_HPP | 
| 50 | > | #ifndef MATH_LEGENDREPOLYNOMIALS_HPP | 
| 51 | > | #define MATH_LEGENDREPOLYNOMIALS_HPP | 
| 52 |  |  | 
| 53 |  | #include <vector> | 
| 54 |  | #include <cassert> | 
| 55 |  |  | 
| 56 |  | #include "math/Polynomial.hpp" | 
| 57 |  |  | 
| 58 | < | namespace oopse { | 
| 58 | > | namespace OpenMD { | 
| 59 |  |  | 
| 60 |  | /** | 
| 61 |  | * @class LegendrePolynomial | 
| 62 | < | * A collection of Chebyshev Polynomials. | 
| 62 | > | * A collection of Legendre Polynomials. | 
| 63 |  | * @todo document | 
| 64 |  | */ | 
| 65 |  | class LegendrePolynomial { | 
| 67 |  | LegendrePolynomial(int maxPower); | 
| 68 |  | virtual ~LegendrePolynomial() {} | 
| 69 |  | /** | 
| 70 | < | * Calculates the value of the nth Chebyshev Polynomial evaluated at the given x value. | 
| 71 | < | * @return The value of the nth Chebyshev Polynomial evaluates at the given x value | 
| 70 | > | * Calculates the value of the nth Legendre Polynomial evaluated at the given x value. | 
| 71 | > | * @return The value of the nth Legendre Polynomial evaluates at the given x value | 
| 72 |  | * @param n | 
| 73 | < | * @param x the value of the independent variable for the nth Chebyshev Polynomial  function | 
| 73 | > | * @param x the value of the independent variable for the nth Legendre Polynomial  function | 
| 74 |  | */ | 
| 75 |  |  | 
| 76 | < | double evaluate(int n, double x) { | 
| 76 | > | RealType evaluate(int n, RealType x) { | 
| 77 |  | assert (n <= maxPower_ && n >=0); | 
| 78 |  | return polyList_[n].evaluate(x); | 
| 79 |  | } | 
| 80 |  |  | 
| 81 |  | /** | 
| 82 | < | * Returns the first derivative of the nth Chebyshev Polynomial. | 
| 83 | < | * @return the first derivative of the nth Chebyshev Polynomial | 
| 82 | > | * Returns the first derivative of the nth Legendre Polynomial. | 
| 83 | > | * @return the first derivative of the nth Legendre Polynomial | 
| 84 |  | * @param n | 
| 85 | < | * @param x the value of the independent variable for the nth Chebyshev Polynomial  function | 
| 85 | > | * @param x the value of the independent variable for the nth Legendre Polynomial  function | 
| 86 |  | */ | 
| 87 | < | double evaluateDerivative(int n, double x) { | 
| 87 | > | RealType evaluateDerivative(int n, RealType x) { | 
| 88 |  | assert (n <= maxPower_ && n >=0); | 
| 89 |  | return polyList_[n].evaluateDerivative(x); | 
| 90 |  | } | 
| 91 |  |  | 
| 92 |  | /** | 
| 93 | < | * Returns the nth Chebyshev Polynomial | 
| 94 | < | * @return the nth Chebyshev Polynomial | 
| 93 | > | * Returns the nth Legendre Polynomial | 
| 94 | > | * @return the nth Legendre Polynomial | 
| 95 |  | * @param n | 
| 96 |  | */ | 
| 97 |  | const DoublePolynomial& getLegendrePolynomial(int n) const { | 
| 112 |  | }; | 
| 113 |  |  | 
| 114 |  |  | 
| 115 | < | } //end namespace oopse | 
| 116 | < | #endif //MATH_CHEBYSHEVPOLYNOMIALS_HPP | 
| 115 | > | } | 
| 116 | > | #endif | 
| 117 |  |  |