| 1 |
gezelter |
507 |
/* |
| 2 |
gezelter |
246 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
|
|
* |
| 4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
| 6 |
|
|
* redistribute this software in source and binary code form, provided |
| 7 |
|
|
* that the following conditions are met: |
| 8 |
|
|
* |
| 9 |
|
|
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
|
|
* publication of scientific results based in part on use of the |
| 11 |
|
|
* program. An acceptable form of acknowledgement is citation of |
| 12 |
|
|
* the article in which the program was described (Matthew |
| 13 |
|
|
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
|
|
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
|
|
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
|
|
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
|
|
* |
| 18 |
|
|
* 2. Redistributions of source code must retain the above copyright |
| 19 |
|
|
* notice, this list of conditions and the following disclaimer. |
| 20 |
|
|
* |
| 21 |
|
|
* 3. Redistributions in binary form must reproduce the above copyright |
| 22 |
|
|
* notice, this list of conditions and the following disclaimer in the |
| 23 |
|
|
* documentation and/or other materials provided with the |
| 24 |
|
|
* distribution. |
| 25 |
|
|
* |
| 26 |
|
|
* This software is provided "AS IS," without a warranty of any |
| 27 |
|
|
* kind. All express or implied conditions, representations and |
| 28 |
|
|
* warranties, including any implied warranty of merchantability, |
| 29 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
| 30 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
| 31 |
|
|
* be liable for any damages suffered by licensee as a result of |
| 32 |
|
|
* using, modifying or distributing the software or its |
| 33 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
| 34 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
| 35 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
| 36 |
|
|
* damages, however caused and regardless of the theory of liability, |
| 37 |
|
|
* arising out of the use of or inability to use software, even if the |
| 38 |
|
|
* University of Notre Dame has been advised of the possibility of |
| 39 |
|
|
* such damages. |
| 40 |
|
|
*/ |
| 41 |
|
|
|
| 42 |
|
|
/** |
| 43 |
|
|
* @file Polynomial.hpp |
| 44 |
|
|
* @author teng lin |
| 45 |
|
|
* @date 11/16/2004 |
| 46 |
|
|
* @version 1.0 |
| 47 |
|
|
*/ |
| 48 |
|
|
|
| 49 |
|
|
#ifndef MATH_POLYNOMIAL_HPP |
| 50 |
|
|
#define MATH_POLYNOMIAL_HPP |
| 51 |
|
|
|
| 52 |
|
|
#include <iostream> |
| 53 |
|
|
#include <list> |
| 54 |
|
|
#include <map> |
| 55 |
|
|
#include <utility> |
| 56 |
tim |
963 |
#include "config.h" |
| 57 |
gezelter |
246 |
namespace oopse { |
| 58 |
|
|
|
| 59 |
gezelter |
507 |
template<typename ElemType> ElemType pow(ElemType x, int N) { |
| 60 |
gezelter |
246 |
ElemType result(1); |
| 61 |
|
|
|
| 62 |
|
|
for (int i = 0; i < N; ++i) { |
| 63 |
gezelter |
507 |
result *= x; |
| 64 |
gezelter |
246 |
} |
| 65 |
|
|
|
| 66 |
|
|
return result; |
| 67 |
gezelter |
507 |
} |
| 68 |
gezelter |
246 |
|
| 69 |
gezelter |
507 |
/** |
| 70 |
|
|
* @class Polynomial Polynomial.hpp "math/Polynomial.hpp" |
| 71 |
|
|
* A generic Polynomial class |
| 72 |
|
|
*/ |
| 73 |
|
|
template<typename ElemType> |
| 74 |
|
|
class Polynomial { |
| 75 |
gezelter |
246 |
|
| 76 |
gezelter |
507 |
public: |
| 77 |
tim |
749 |
typedef Polynomial<ElemType> PolynomialType; |
| 78 |
gezelter |
507 |
typedef int ExponentType; |
| 79 |
|
|
typedef ElemType CoefficientType; |
| 80 |
|
|
typedef std::map<ExponentType, CoefficientType> PolynomialPairMap; |
| 81 |
|
|
typedef typename PolynomialPairMap::iterator iterator; |
| 82 |
|
|
typedef typename PolynomialPairMap::const_iterator const_iterator; |
| 83 |
tim |
749 |
|
| 84 |
|
|
Polynomial() {} |
| 85 |
|
|
Polynomial(ElemType v) {setCoefficient(0, v);} |
| 86 |
gezelter |
507 |
/** |
| 87 |
|
|
* Calculates the value of this Polynomial evaluated at the given x value. |
| 88 |
|
|
* @return The value of this Polynomial evaluates at the given x value |
| 89 |
|
|
* @param x the value of the independent variable for this Polynomial function |
| 90 |
|
|
*/ |
| 91 |
|
|
ElemType evaluate(const ElemType& x) { |
| 92 |
|
|
ElemType result = ElemType(); |
| 93 |
|
|
ExponentType exponent; |
| 94 |
|
|
CoefficientType coefficient; |
| 95 |
gezelter |
246 |
|
| 96 |
gezelter |
507 |
for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { |
| 97 |
|
|
exponent = i->first; |
| 98 |
|
|
coefficient = i->second; |
| 99 |
|
|
result += pow(x, exponent) * coefficient; |
| 100 |
|
|
} |
| 101 |
gezelter |
246 |
|
| 102 |
gezelter |
507 |
return result; |
| 103 |
|
|
} |
| 104 |
gezelter |
246 |
|
| 105 |
gezelter |
507 |
/** |
| 106 |
|
|
* Returns the first derivative of this polynomial. |
| 107 |
|
|
* @return the first derivative of this polynomial |
| 108 |
|
|
* @param x |
| 109 |
|
|
*/ |
| 110 |
|
|
ElemType evaluateDerivative(const ElemType& x) { |
| 111 |
|
|
ElemType result = ElemType(); |
| 112 |
|
|
ExponentType exponent; |
| 113 |
|
|
CoefficientType coefficient; |
| 114 |
gezelter |
246 |
|
| 115 |
gezelter |
507 |
for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { |
| 116 |
|
|
exponent = i->first; |
| 117 |
|
|
coefficient = i->second; |
| 118 |
|
|
result += pow(x, exponent - 1) * coefficient * exponent; |
| 119 |
|
|
} |
| 120 |
gezelter |
246 |
|
| 121 |
gezelter |
507 |
return result; |
| 122 |
|
|
} |
| 123 |
gezelter |
246 |
|
| 124 |
gezelter |
507 |
/** |
| 125 |
|
|
* Set the coefficent of the specified exponent, if the coefficient is already there, it |
| 126 |
|
|
* will be overwritten. |
| 127 |
|
|
* @param exponent exponent of a term in this Polynomial |
| 128 |
|
|
* @param coefficient multiplier of a term in this Polynomial |
| 129 |
|
|
*/ |
| 130 |
gezelter |
246 |
|
| 131 |
gezelter |
507 |
void setCoefficient(int exponent, const ElemType& coefficient) { |
| 132 |
|
|
polyPairMap_.insert(typename PolynomialPairMap::value_type(exponent, coefficient)); |
| 133 |
|
|
} |
| 134 |
gezelter |
246 |
|
| 135 |
gezelter |
507 |
/** |
| 136 |
|
|
* Set the coefficent of the specified exponent. If the coefficient is already there, just add the |
| 137 |
|
|
* new coefficient to the old one, otherwise, just call setCoefficent |
| 138 |
|
|
* @param exponent exponent of a term in this Polynomial |
| 139 |
|
|
* @param coefficient multiplier of a term in this Polynomial |
| 140 |
|
|
*/ |
| 141 |
gezelter |
246 |
|
| 142 |
gezelter |
507 |
void addCoefficient(int exponent, const ElemType& coefficient) { |
| 143 |
|
|
iterator i = polyPairMap_.find(exponent); |
| 144 |
gezelter |
246 |
|
| 145 |
gezelter |
507 |
if (i != end()) { |
| 146 |
|
|
i->second += coefficient; |
| 147 |
|
|
} else { |
| 148 |
|
|
setCoefficient(exponent, coefficient); |
| 149 |
|
|
} |
| 150 |
|
|
} |
| 151 |
gezelter |
246 |
|
| 152 |
|
|
|
| 153 |
gezelter |
507 |
/** |
| 154 |
|
|
* Returns the coefficient associated with the given power for this Polynomial. |
| 155 |
|
|
* @return the coefficient associated with the given power for this Polynomial |
| 156 |
|
|
* @exponent exponent of any term in this Polynomial |
| 157 |
|
|
*/ |
| 158 |
|
|
ElemType getCoefficient(ExponentType exponent) { |
| 159 |
|
|
iterator i = polyPairMap_.find(exponent); |
| 160 |
gezelter |
246 |
|
| 161 |
gezelter |
507 |
if (i != end()) { |
| 162 |
|
|
return i->second; |
| 163 |
|
|
} else { |
| 164 |
|
|
return ElemType(0); |
| 165 |
|
|
} |
| 166 |
|
|
} |
| 167 |
gezelter |
246 |
|
| 168 |
gezelter |
507 |
iterator begin() { |
| 169 |
|
|
return polyPairMap_.begin(); |
| 170 |
|
|
} |
| 171 |
gezelter |
246 |
|
| 172 |
gezelter |
507 |
const_iterator begin() const{ |
| 173 |
|
|
return polyPairMap_.begin(); |
| 174 |
|
|
} |
| 175 |
gezelter |
246 |
|
| 176 |
gezelter |
507 |
iterator end() { |
| 177 |
|
|
return polyPairMap_.end(); |
| 178 |
|
|
} |
| 179 |
gezelter |
246 |
|
| 180 |
gezelter |
507 |
const_iterator end() const{ |
| 181 |
|
|
return polyPairMap_.end(); |
| 182 |
|
|
} |
| 183 |
gezelter |
246 |
|
| 184 |
gezelter |
507 |
iterator find(ExponentType exponent) { |
| 185 |
|
|
return polyPairMap_.find(exponent); |
| 186 |
|
|
} |
| 187 |
gezelter |
246 |
|
| 188 |
gezelter |
507 |
size_t size() { |
| 189 |
|
|
return polyPairMap_.size(); |
| 190 |
|
|
} |
| 191 |
tim |
749 |
|
| 192 |
cpuglis |
1230 |
PolynomialType& operator = (const PolynomialType& p) { |
| 193 |
|
|
|
| 194 |
|
|
if (this != &p) // protect against invalid self-assignment |
| 195 |
|
|
{ |
| 196 |
|
|
typename Polynomial<ElemType>::const_iterator i; |
| 197 |
|
|
|
| 198 |
|
|
polyPairMap_.clear(); // clear out the old map |
| 199 |
|
|
|
| 200 |
|
|
for (i = p.begin(); i != p.end(); ++i) { |
| 201 |
|
|
this->setCoefficient(i->first, i->second); |
| 202 |
|
|
} |
| 203 |
|
|
} |
| 204 |
|
|
// by convention, always return *this |
| 205 |
|
|
return *this; |
| 206 |
|
|
} |
| 207 |
|
|
|
| 208 |
tim |
749 |
PolynomialType& operator += (const PolynomialType& p) { |
| 209 |
|
|
typename Polynomial<ElemType>::const_iterator i; |
| 210 |
|
|
|
| 211 |
|
|
for (i = p.begin(); i != p.end(); ++i) { |
| 212 |
|
|
this->addCoefficient(i->first, i->second); |
| 213 |
|
|
} |
| 214 |
|
|
|
| 215 |
|
|
return *this; |
| 216 |
|
|
} |
| 217 |
|
|
|
| 218 |
|
|
PolynomialType& operator -= (const PolynomialType& p) { |
| 219 |
|
|
typename Polynomial<ElemType>::const_iterator i; |
| 220 |
|
|
for (i = p.begin(); i != p.end(); ++i) { |
| 221 |
|
|
this->addCoefficient(i->first, -i->second); |
| 222 |
|
|
} |
| 223 |
gezelter |
877 |
return *this; |
| 224 |
tim |
749 |
} |
| 225 |
|
|
|
| 226 |
|
|
PolynomialType& operator *= (const PolynomialType& p) { |
| 227 |
|
|
typename Polynomial<ElemType>::const_iterator i; |
| 228 |
|
|
typename Polynomial<ElemType>::const_iterator j; |
| 229 |
|
|
|
| 230 |
|
|
for (i = this->begin(); i !=this->end(); ++i) { |
| 231 |
|
|
for (j = p.begin(); j !=p.end(); ++j) { |
| 232 |
|
|
this->addCoefficient( i->first + j->first, i->second * j->second); |
| 233 |
|
|
} |
| 234 |
|
|
} |
| 235 |
|
|
|
| 236 |
|
|
return *this; |
| 237 |
|
|
} |
| 238 |
|
|
|
| 239 |
|
|
|
| 240 |
gezelter |
507 |
private: |
| 241 |
gezelter |
246 |
|
| 242 |
gezelter |
507 |
PolynomialPairMap polyPairMap_; |
| 243 |
|
|
}; |
| 244 |
gezelter |
246 |
|
| 245 |
|
|
|
| 246 |
gezelter |
507 |
/** |
| 247 |
|
|
* Generates and returns the product of two given Polynomials. |
| 248 |
|
|
* @return A Polynomial containing the product of the two given Polynomial parameters |
| 249 |
|
|
*/ |
| 250 |
|
|
template<typename ElemType> |
| 251 |
|
|
Polynomial<ElemType> operator *(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { |
| 252 |
gezelter |
246 |
typename Polynomial<ElemType>::const_iterator i; |
| 253 |
|
|
typename Polynomial<ElemType>::const_iterator j; |
| 254 |
|
|
Polynomial<ElemType> p; |
| 255 |
|
|
|
| 256 |
|
|
for (i = p1.begin(); i !=p1.end(); ++i) { |
| 257 |
gezelter |
507 |
for (j = p2.begin(); j !=p2.end(); ++j) { |
| 258 |
|
|
p.addCoefficient( i->first + j->first, i->second * j->second); |
| 259 |
|
|
} |
| 260 |
gezelter |
246 |
} |
| 261 |
|
|
|
| 262 |
|
|
return p; |
| 263 |
gezelter |
507 |
} |
| 264 |
gezelter |
246 |
|
| 265 |
tim |
876 |
template<typename ElemType> |
| 266 |
|
|
Polynomial<ElemType> operator *(const Polynomial<ElemType>& p, const ElemType v) { |
| 267 |
|
|
typename Polynomial<ElemType>::const_iterator i; |
| 268 |
|
|
Polynomial<ElemType> result; |
| 269 |
|
|
|
| 270 |
|
|
for (i = p.begin(); i !=p.end(); ++i) { |
| 271 |
|
|
result.addCoefficient( i->first , i->second * v); |
| 272 |
|
|
} |
| 273 |
|
|
|
| 274 |
|
|
return result; |
| 275 |
|
|
} |
| 276 |
|
|
|
| 277 |
|
|
template<typename ElemType> |
| 278 |
|
|
Polynomial<ElemType> operator *( const ElemType v, const Polynomial<ElemType>& p) { |
| 279 |
|
|
typename Polynomial<ElemType>::const_iterator i; |
| 280 |
|
|
Polynomial<ElemType> result; |
| 281 |
|
|
|
| 282 |
|
|
for (i = p.begin(); i !=p.end(); ++i) { |
| 283 |
|
|
result.addCoefficient( i->first , i->second * v); |
| 284 |
|
|
} |
| 285 |
|
|
|
| 286 |
|
|
return result; |
| 287 |
|
|
} |
| 288 |
|
|
|
| 289 |
gezelter |
507 |
/** |
| 290 |
|
|
* Generates and returns the sum of two given Polynomials. |
| 291 |
|
|
* @param p1 the first polynomial |
| 292 |
|
|
* @param p2 the second polynomial |
| 293 |
|
|
*/ |
| 294 |
|
|
template<typename ElemType> |
| 295 |
|
|
Polynomial<ElemType> operator +(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { |
| 296 |
gezelter |
246 |
Polynomial<ElemType> p(p1); |
| 297 |
|
|
|
| 298 |
|
|
typename Polynomial<ElemType>::const_iterator i; |
| 299 |
|
|
|
| 300 |
|
|
for (i = p2.begin(); i != p2.end(); ++i) { |
| 301 |
gezelter |
507 |
p.addCoefficient(i->first, i->second); |
| 302 |
gezelter |
246 |
} |
| 303 |
|
|
|
| 304 |
|
|
return p; |
| 305 |
|
|
|
| 306 |
gezelter |
507 |
} |
| 307 |
gezelter |
246 |
|
| 308 |
gezelter |
507 |
/** |
| 309 |
|
|
* Generates and returns the difference of two given Polynomials. |
| 310 |
|
|
* @return |
| 311 |
|
|
* @param p1 the first polynomial |
| 312 |
|
|
* @param p2 the second polynomial |
| 313 |
|
|
*/ |
| 314 |
|
|
template<typename ElemType> |
| 315 |
|
|
Polynomial<ElemType> operator -(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { |
| 316 |
gezelter |
246 |
Polynomial<ElemType> p(p1); |
| 317 |
|
|
|
| 318 |
|
|
typename Polynomial<ElemType>::const_iterator i; |
| 319 |
|
|
|
| 320 |
|
|
for (i = p2.begin(); i != p2.end(); ++i) { |
| 321 |
gezelter |
507 |
p.addCoefficient(i->first, -i->second); |
| 322 |
gezelter |
246 |
} |
| 323 |
|
|
|
| 324 |
|
|
return p; |
| 325 |
|
|
|
| 326 |
gezelter |
507 |
} |
| 327 |
gezelter |
246 |
|
| 328 |
gezelter |
507 |
/** |
| 329 |
|
|
* Tests if two polynomial have the same exponents |
| 330 |
tim |
883 |
* @return true if all of the exponents in these Polynomial are identical |
| 331 |
gezelter |
507 |
* @param p1 the first polynomial |
| 332 |
|
|
* @param p2 the second polynomial |
| 333 |
|
|
* @note this function does not compare the coefficient |
| 334 |
|
|
*/ |
| 335 |
|
|
template<typename ElemType> |
| 336 |
|
|
bool equal(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { |
| 337 |
gezelter |
246 |
|
| 338 |
|
|
typename Polynomial<ElemType>::const_iterator i; |
| 339 |
|
|
typename Polynomial<ElemType>::const_iterator j; |
| 340 |
|
|
|
| 341 |
|
|
if (p1.size() != p2.size() ) { |
| 342 |
gezelter |
507 |
return false; |
| 343 |
gezelter |
246 |
} |
| 344 |
|
|
|
| 345 |
|
|
for (i = p1.begin(), j = p2.begin(); i != p1.end() && j != p2.end(); ++i, ++j) { |
| 346 |
gezelter |
507 |
if (i->first != j->first) { |
| 347 |
|
|
return false; |
| 348 |
|
|
} |
| 349 |
gezelter |
246 |
} |
| 350 |
|
|
|
| 351 |
|
|
return true; |
| 352 |
gezelter |
507 |
} |
| 353 |
gezelter |
246 |
|
| 354 |
tim |
963 |
typedef Polynomial<RealType> DoublePolynomial; |
| 355 |
gezelter |
246 |
|
| 356 |
|
|
} //end namespace oopse |
| 357 |
|
|
#endif //MATH_POLYNOMIAL_HPP |