| 1 | gezelter | 507 | /* | 
| 2 | gezelter | 246 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 |  |  | * | 
| 4 |  |  | * The University of Notre Dame grants you ("Licensee") a | 
| 5 |  |  | * non-exclusive, royalty free, license to use, modify and | 
| 6 |  |  | * redistribute this software in source and binary code form, provided | 
| 7 |  |  | * that the following conditions are met: | 
| 8 |  |  | * | 
| 9 |  |  | * 1. Acknowledgement of the program authors must be made in any | 
| 10 |  |  | *    publication of scientific results based in part on use of the | 
| 11 |  |  | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 |  |  | *    the article in which the program was described (Matthew | 
| 13 |  |  | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 |  |  | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 |  |  | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 |  |  | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 |  |  | * | 
| 18 |  |  | * 2. Redistributions of source code must retain the above copyright | 
| 19 |  |  | *    notice, this list of conditions and the following disclaimer. | 
| 20 |  |  | * | 
| 21 |  |  | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 |  |  | *    notice, this list of conditions and the following disclaimer in the | 
| 23 |  |  | *    documentation and/or other materials provided with the | 
| 24 |  |  | *    distribution. | 
| 25 |  |  | * | 
| 26 |  |  | * This software is provided "AS IS," without a warranty of any | 
| 27 |  |  | * kind. All express or implied conditions, representations and | 
| 28 |  |  | * warranties, including any implied warranty of merchantability, | 
| 29 |  |  | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 |  |  | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 |  |  | * be liable for any damages suffered by licensee as a result of | 
| 32 |  |  | * using, modifying or distributing the software or its | 
| 33 |  |  | * derivatives. In no event will the University of Notre Dame or its | 
| 34 |  |  | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 |  |  | * direct, indirect, special, consequential, incidental or punitive | 
| 36 |  |  | * damages, however caused and regardless of the theory of liability, | 
| 37 |  |  | * arising out of the use of or inability to use software, even if the | 
| 38 |  |  | * University of Notre Dame has been advised of the possibility of | 
| 39 |  |  | * such damages. | 
| 40 |  |  | */ | 
| 41 |  |  |  | 
| 42 |  |  | /** | 
| 43 |  |  | * @file Polynomial.hpp | 
| 44 |  |  | * @author    teng lin | 
| 45 |  |  | * @date  11/16/2004 | 
| 46 |  |  | * @version 1.0 | 
| 47 |  |  | */ | 
| 48 |  |  |  | 
| 49 |  |  | #ifndef MATH_POLYNOMIAL_HPP | 
| 50 |  |  | #define MATH_POLYNOMIAL_HPP | 
| 51 |  |  |  | 
| 52 |  |  | #include <iostream> | 
| 53 |  |  | #include <list> | 
| 54 |  |  | #include <map> | 
| 55 |  |  | #include <utility> | 
| 56 |  |  |  | 
| 57 |  |  | namespace oopse { | 
| 58 |  |  |  | 
| 59 | gezelter | 507 | template<typename ElemType> ElemType pow(ElemType x, int N) { | 
| 60 | gezelter | 246 | ElemType result(1); | 
| 61 |  |  |  | 
| 62 |  |  | for (int i = 0; i < N; ++i) { | 
| 63 | gezelter | 507 | result *= x; | 
| 64 | gezelter | 246 | } | 
| 65 |  |  |  | 
| 66 |  |  | return result; | 
| 67 | gezelter | 507 | } | 
| 68 | gezelter | 246 |  | 
| 69 | gezelter | 507 | /** | 
| 70 |  |  | * @class Polynomial Polynomial.hpp "math/Polynomial.hpp" | 
| 71 |  |  | * A generic Polynomial class | 
| 72 |  |  | */ | 
| 73 |  |  | template<typename ElemType> | 
| 74 |  |  | class Polynomial { | 
| 75 | gezelter | 246 |  | 
| 76 | gezelter | 507 | public: | 
| 77 | tim | 749 | typedef Polynomial<ElemType> PolynomialType; | 
| 78 | gezelter | 507 | typedef int ExponentType; | 
| 79 |  |  | typedef ElemType CoefficientType; | 
| 80 |  |  | typedef std::map<ExponentType, CoefficientType> PolynomialPairMap; | 
| 81 |  |  | typedef typename PolynomialPairMap::iterator iterator; | 
| 82 |  |  | typedef typename PolynomialPairMap::const_iterator const_iterator; | 
| 83 | tim | 749 |  | 
| 84 |  |  | Polynomial() {} | 
| 85 |  |  | Polynomial(ElemType v) {setCoefficient(0, v);} | 
| 86 | gezelter | 507 | /** | 
| 87 |  |  | * Calculates the value of this Polynomial evaluated at the given x value. | 
| 88 |  |  | * @return The value of this Polynomial evaluates at the given x value | 
| 89 |  |  | * @param x the value of the independent variable for this Polynomial function | 
| 90 |  |  | */ | 
| 91 |  |  | ElemType evaluate(const ElemType& x) { | 
| 92 |  |  | ElemType result = ElemType(); | 
| 93 |  |  | ExponentType exponent; | 
| 94 |  |  | CoefficientType coefficient; | 
| 95 | gezelter | 246 |  | 
| 96 | gezelter | 507 | for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { | 
| 97 |  |  | exponent = i->first; | 
| 98 |  |  | coefficient = i->second; | 
| 99 |  |  | result  += pow(x, exponent) * coefficient; | 
| 100 |  |  | } | 
| 101 | gezelter | 246 |  | 
| 102 | gezelter | 507 | return result; | 
| 103 |  |  | } | 
| 104 | gezelter | 246 |  | 
| 105 | gezelter | 507 | /** | 
| 106 |  |  | * Returns the first derivative of this polynomial. | 
| 107 |  |  | * @return the first derivative of this polynomial | 
| 108 |  |  | * @param x | 
| 109 |  |  | */ | 
| 110 |  |  | ElemType evaluateDerivative(const ElemType& x) { | 
| 111 |  |  | ElemType result = ElemType(); | 
| 112 |  |  | ExponentType exponent; | 
| 113 |  |  | CoefficientType coefficient; | 
| 114 | gezelter | 246 |  | 
| 115 | gezelter | 507 | for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { | 
| 116 |  |  | exponent = i->first; | 
| 117 |  |  | coefficient = i->second; | 
| 118 |  |  | result  += pow(x, exponent - 1) * coefficient * exponent; | 
| 119 |  |  | } | 
| 120 | gezelter | 246 |  | 
| 121 | gezelter | 507 | return result; | 
| 122 |  |  | } | 
| 123 | gezelter | 246 |  | 
| 124 | gezelter | 507 | /** | 
| 125 |  |  | * Set the coefficent of the specified exponent, if the coefficient is already there, it | 
| 126 |  |  | * will be overwritten. | 
| 127 |  |  | * @param exponent exponent of a term in this Polynomial | 
| 128 |  |  | * @param coefficient multiplier of a term in this Polynomial | 
| 129 |  |  | */ | 
| 130 | gezelter | 246 |  | 
| 131 | gezelter | 507 | void setCoefficient(int exponent, const ElemType& coefficient) { | 
| 132 |  |  | polyPairMap_.insert(typename PolynomialPairMap::value_type(exponent, coefficient)); | 
| 133 |  |  | } | 
| 134 | gezelter | 246 |  | 
| 135 | gezelter | 507 | /** | 
| 136 |  |  | * Set the coefficent of the specified exponent. If the coefficient is already there,  just add the | 
| 137 |  |  | * new coefficient to the old one, otherwise,  just call setCoefficent | 
| 138 |  |  | * @param exponent exponent of a term in this Polynomial | 
| 139 |  |  | * @param coefficient multiplier of a term in this Polynomial | 
| 140 |  |  | */ | 
| 141 | gezelter | 246 |  | 
| 142 | gezelter | 507 | void addCoefficient(int exponent, const ElemType& coefficient) { | 
| 143 |  |  | iterator i = polyPairMap_.find(exponent); | 
| 144 | gezelter | 246 |  | 
| 145 | gezelter | 507 | if (i != end()) { | 
| 146 |  |  | i->second += coefficient; | 
| 147 |  |  | } else { | 
| 148 |  |  | setCoefficient(exponent, coefficient); | 
| 149 |  |  | } | 
| 150 |  |  | } | 
| 151 | gezelter | 246 |  | 
| 152 |  |  |  | 
| 153 | gezelter | 507 | /** | 
| 154 |  |  | * Returns the coefficient associated with the given power for this Polynomial. | 
| 155 |  |  | * @return the coefficient associated with the given power for this Polynomial | 
| 156 |  |  | * @exponent exponent of any term in this Polynomial | 
| 157 |  |  | */ | 
| 158 |  |  | ElemType getCoefficient(ExponentType exponent) { | 
| 159 |  |  | iterator i = polyPairMap_.find(exponent); | 
| 160 | gezelter | 246 |  | 
| 161 | gezelter | 507 | if (i != end()) { | 
| 162 |  |  | return i->second; | 
| 163 |  |  | } else { | 
| 164 |  |  | return ElemType(0); | 
| 165 |  |  | } | 
| 166 |  |  | } | 
| 167 | gezelter | 246 |  | 
| 168 | gezelter | 507 | iterator begin() { | 
| 169 |  |  | return polyPairMap_.begin(); | 
| 170 |  |  | } | 
| 171 | gezelter | 246 |  | 
| 172 | gezelter | 507 | const_iterator begin() const{ | 
| 173 |  |  | return polyPairMap_.begin(); | 
| 174 |  |  | } | 
| 175 | gezelter | 246 |  | 
| 176 | gezelter | 507 | iterator end() { | 
| 177 |  |  | return polyPairMap_.end(); | 
| 178 |  |  | } | 
| 179 | gezelter | 246 |  | 
| 180 | gezelter | 507 | const_iterator end() const{ | 
| 181 |  |  | return polyPairMap_.end(); | 
| 182 |  |  | } | 
| 183 | gezelter | 246 |  | 
| 184 | gezelter | 507 | iterator find(ExponentType exponent) { | 
| 185 |  |  | return polyPairMap_.find(exponent); | 
| 186 |  |  | } | 
| 187 | gezelter | 246 |  | 
| 188 | gezelter | 507 | size_t size() { | 
| 189 |  |  | return polyPairMap_.size(); | 
| 190 |  |  | } | 
| 191 | tim | 749 |  | 
| 192 |  |  | PolynomialType& operator += (const PolynomialType& p) { | 
| 193 |  |  | typename Polynomial<ElemType>::const_iterator i; | 
| 194 |  |  |  | 
| 195 |  |  | for (i =  p.begin(); i  != p.end(); ++i) { | 
| 196 |  |  | this->addCoefficient(i->first, i->second); | 
| 197 |  |  | } | 
| 198 |  |  |  | 
| 199 |  |  | return *this; | 
| 200 |  |  | } | 
| 201 |  |  |  | 
| 202 |  |  | PolynomialType& operator -= (const PolynomialType& p) { | 
| 203 |  |  | typename Polynomial<ElemType>::const_iterator i; | 
| 204 |  |  | for (i =  p.begin(); i  != p.end(); ++i) { | 
| 205 |  |  | this->addCoefficient(i->first, -i->second); | 
| 206 |  |  | } | 
| 207 | gezelter | 877 | return *this; | 
| 208 | tim | 749 | } | 
| 209 |  |  |  | 
| 210 |  |  | PolynomialType& operator *= (const PolynomialType& p) { | 
| 211 |  |  | typename Polynomial<ElemType>::const_iterator i; | 
| 212 |  |  | typename Polynomial<ElemType>::const_iterator j; | 
| 213 |  |  |  | 
| 214 |  |  | for (i = this->begin(); i !=this->end(); ++i) { | 
| 215 |  |  | for (j = p.begin(); j !=p.end(); ++j) { | 
| 216 |  |  | this->addCoefficient( i->first + j->first, i->second * j->second); | 
| 217 |  |  | } | 
| 218 |  |  | } | 
| 219 |  |  |  | 
| 220 |  |  | return *this; | 
| 221 |  |  | } | 
| 222 |  |  |  | 
| 223 |  |  |  | 
| 224 | gezelter | 507 | private: | 
| 225 | gezelter | 246 |  | 
| 226 | gezelter | 507 | PolynomialPairMap polyPairMap_; | 
| 227 |  |  | }; | 
| 228 | gezelter | 246 |  | 
| 229 |  |  |  | 
| 230 | gezelter | 507 | /** | 
| 231 |  |  | * Generates and returns the product of two given Polynomials. | 
| 232 |  |  | * @return A Polynomial containing the product of the two given Polynomial parameters | 
| 233 |  |  | */ | 
| 234 |  |  | template<typename ElemType> | 
| 235 |  |  | Polynomial<ElemType> operator *(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 236 | gezelter | 246 | typename Polynomial<ElemType>::const_iterator i; | 
| 237 |  |  | typename Polynomial<ElemType>::const_iterator j; | 
| 238 |  |  | Polynomial<ElemType> p; | 
| 239 |  |  |  | 
| 240 |  |  | for (i = p1.begin(); i !=p1.end(); ++i) { | 
| 241 | gezelter | 507 | for (j = p2.begin(); j !=p2.end(); ++j) { | 
| 242 |  |  | p.addCoefficient( i->first + j->first, i->second * j->second); | 
| 243 |  |  | } | 
| 244 | gezelter | 246 | } | 
| 245 |  |  |  | 
| 246 |  |  | return p; | 
| 247 | gezelter | 507 | } | 
| 248 | gezelter | 246 |  | 
| 249 | tim | 876 | template<typename ElemType> | 
| 250 |  |  | Polynomial<ElemType> operator *(const Polynomial<ElemType>& p, const ElemType v) { | 
| 251 |  |  | typename Polynomial<ElemType>::const_iterator i; | 
| 252 |  |  | Polynomial<ElemType> result; | 
| 253 |  |  |  | 
| 254 |  |  | for (i = p.begin(); i !=p.end(); ++i) { | 
| 255 |  |  | result.addCoefficient( i->first , i->second * v); | 
| 256 |  |  | } | 
| 257 |  |  |  | 
| 258 |  |  | return result; | 
| 259 |  |  | } | 
| 260 |  |  |  | 
| 261 |  |  | template<typename ElemType> | 
| 262 |  |  | Polynomial<ElemType> operator *( const ElemType v, const Polynomial<ElemType>& p) { | 
| 263 |  |  | typename Polynomial<ElemType>::const_iterator i; | 
| 264 |  |  | Polynomial<ElemType> result; | 
| 265 |  |  |  | 
| 266 |  |  | for (i = p.begin(); i !=p.end(); ++i) { | 
| 267 |  |  | result.addCoefficient( i->first , i->second * v); | 
| 268 |  |  | } | 
| 269 |  |  |  | 
| 270 |  |  | return result; | 
| 271 |  |  | } | 
| 272 |  |  |  | 
| 273 | gezelter | 507 | /** | 
| 274 |  |  | * Generates and returns the sum of two given Polynomials. | 
| 275 |  |  | * @param p1 the first polynomial | 
| 276 |  |  | * @param p2 the second polynomial | 
| 277 |  |  | */ | 
| 278 |  |  | template<typename ElemType> | 
| 279 |  |  | Polynomial<ElemType> operator +(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 280 | gezelter | 246 | Polynomial<ElemType> p(p1); | 
| 281 |  |  |  | 
| 282 |  |  | typename Polynomial<ElemType>::const_iterator i; | 
| 283 |  |  |  | 
| 284 |  |  | for (i =  p2.begin(); i  != p2.end(); ++i) { | 
| 285 | gezelter | 507 | p.addCoefficient(i->first, i->second); | 
| 286 | gezelter | 246 | } | 
| 287 |  |  |  | 
| 288 |  |  | return p; | 
| 289 |  |  |  | 
| 290 | gezelter | 507 | } | 
| 291 | gezelter | 246 |  | 
| 292 | gezelter | 507 | /** | 
| 293 |  |  | * Generates and returns the difference of two given Polynomials. | 
| 294 |  |  | * @return | 
| 295 |  |  | * @param p1 the first polynomial | 
| 296 |  |  | * @param p2 the second polynomial | 
| 297 |  |  | */ | 
| 298 |  |  | template<typename ElemType> | 
| 299 |  |  | Polynomial<ElemType> operator -(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 300 | gezelter | 246 | Polynomial<ElemType> p(p1); | 
| 301 |  |  |  | 
| 302 |  |  | typename Polynomial<ElemType>::const_iterator i; | 
| 303 |  |  |  | 
| 304 |  |  | for (i =  p2.begin(); i  != p2.end(); ++i) { | 
| 305 | gezelter | 507 | p.addCoefficient(i->first, -i->second); | 
| 306 | gezelter | 246 | } | 
| 307 |  |  |  | 
| 308 |  |  | return p; | 
| 309 |  |  |  | 
| 310 | gezelter | 507 | } | 
| 311 | gezelter | 246 |  | 
| 312 | gezelter | 507 | /** | 
| 313 |  |  | * Tests if two polynomial have the same exponents | 
| 314 |  |  | * @return true if these all of the exponents in these Polynomial are identical | 
| 315 |  |  | * @param p1 the first polynomial | 
| 316 |  |  | * @param p2 the second polynomial | 
| 317 |  |  | * @note this function does not compare the coefficient | 
| 318 |  |  | */ | 
| 319 |  |  | template<typename ElemType> | 
| 320 |  |  | bool equal(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 321 | gezelter | 246 |  | 
| 322 |  |  | typename Polynomial<ElemType>::const_iterator i; | 
| 323 |  |  | typename Polynomial<ElemType>::const_iterator j; | 
| 324 |  |  |  | 
| 325 |  |  | if (p1.size() != p2.size() ) { | 
| 326 | gezelter | 507 | return false; | 
| 327 | gezelter | 246 | } | 
| 328 |  |  |  | 
| 329 |  |  | for (i =  p1.begin(), j = p2.begin(); i  != p1.end() && j != p2.end(); ++i, ++j) { | 
| 330 | gezelter | 507 | if (i->first != j->first) { | 
| 331 |  |  | return false; | 
| 332 |  |  | } | 
| 333 | gezelter | 246 | } | 
| 334 |  |  |  | 
| 335 |  |  | return true; | 
| 336 | gezelter | 507 | } | 
| 337 | gezelter | 246 |  | 
| 338 | gezelter | 507 | typedef Polynomial<double> DoublePolynomial; | 
| 339 | gezelter | 246 |  | 
| 340 |  |  | } //end namespace oopse | 
| 341 |  |  | #endif //MATH_POLYNOMIAL_HPP |