| 6 |
|
* redistribute this software in source and binary code form, provided |
| 7 |
|
* that the following conditions are met: |
| 8 |
|
* |
| 9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
< |
* publication of scientific results based in part on use of the |
| 11 |
< |
* program. An acceptable form of acknowledgement is citation of |
| 12 |
< |
* the article in which the program was described (Matthew |
| 13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
< |
* |
| 18 |
< |
* 2. Redistributions of source code must retain the above copyright |
| 9 |
> |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
|
* notice, this list of conditions and the following disclaimer. |
| 11 |
|
* |
| 12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
| 12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
|
* notice, this list of conditions and the following disclaimer in the |
| 14 |
|
* documentation and/or other materials provided with the |
| 15 |
|
* distribution. |
| 28 |
|
* arising out of the use of or inability to use software, even if the |
| 29 |
|
* University of Notre Dame has been advised of the possibility of |
| 30 |
|
* such damages. |
| 31 |
+ |
* |
| 32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
+ |
* research, please cite the appropriate papers when you publish your |
| 34 |
+ |
* work. Good starting points are: |
| 35 |
+ |
* |
| 36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
| 40 |
|
*/ |
| 41 |
|
|
| 42 |
|
/** |
| 53 |
|
#include <list> |
| 54 |
|
#include <map> |
| 55 |
|
#include <utility> |
| 56 |
+ |
#include <complex> |
| 57 |
+ |
#include "config.h" |
| 58 |
+ |
#include "math/Eigenvalue.hpp" |
| 59 |
|
|
| 60 |
< |
namespace oopse { |
| 60 |
> |
namespace OpenMD { |
| 61 |
> |
|
| 62 |
> |
template<typename Real> Real fastpow(Real x, int N) { |
| 63 |
> |
Real result(1); //or 1.0? |
| 64 |
|
|
| 59 |
– |
template<typename ElemType> ElemType pow(ElemType x, int N) { |
| 60 |
– |
ElemType result(1); |
| 61 |
– |
|
| 65 |
|
for (int i = 0; i < N; ++i) { |
| 66 |
|
result *= x; |
| 67 |
|
} |
| 73 |
|
* @class Polynomial Polynomial.hpp "math/Polynomial.hpp" |
| 74 |
|
* A generic Polynomial class |
| 75 |
|
*/ |
| 76 |
< |
template<typename ElemType> |
| 76 |
> |
template<typename Real> |
| 77 |
|
class Polynomial { |
| 78 |
|
|
| 79 |
|
public: |
| 80 |
< |
typedef Polynomial<ElemType> PolynomialType; |
| 80 |
> |
typedef Polynomial<Real> PolynomialType; |
| 81 |
|
typedef int ExponentType; |
| 82 |
< |
typedef ElemType CoefficientType; |
| 82 |
> |
typedef Real CoefficientType; |
| 83 |
|
typedef std::map<ExponentType, CoefficientType> PolynomialPairMap; |
| 84 |
|
typedef typename PolynomialPairMap::iterator iterator; |
| 85 |
|
typedef typename PolynomialPairMap::const_iterator const_iterator; |
| 86 |
|
|
| 87 |
|
Polynomial() {} |
| 88 |
< |
Polynomial(ElemType v) {setCoefficient(0, v);} |
| 88 |
> |
Polynomial(Real v) {setCoefficient(0, v);} |
| 89 |
|
/** |
| 90 |
|
* Calculates the value of this Polynomial evaluated at the given x value. |
| 91 |
< |
* @return The value of this Polynomial evaluates at the given x value |
| 92 |
< |
* @param x the value of the independent variable for this Polynomial function |
| 91 |
> |
* @return The value of this Polynomial evaluates at the given x value |
| 92 |
> |
* @param x the value of the independent variable for this |
| 93 |
> |
* Polynomial function |
| 94 |
|
*/ |
| 95 |
< |
ElemType evaluate(const ElemType& x) { |
| 96 |
< |
ElemType result = ElemType(); |
| 95 |
> |
Real evaluate(const Real& x) { |
| 96 |
> |
Real result = Real(); |
| 97 |
|
ExponentType exponent; |
| 98 |
|
CoefficientType coefficient; |
| 99 |
|
|
| 100 |
|
for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { |
| 101 |
|
exponent = i->first; |
| 102 |
|
coefficient = i->second; |
| 103 |
< |
result += pow(x, exponent) * coefficient; |
| 103 |
> |
result += fastpow(x, exponent) * coefficient; |
| 104 |
|
} |
| 105 |
|
|
| 106 |
|
return result; |
| 111 |
|
* @return the first derivative of this polynomial |
| 112 |
|
* @param x |
| 113 |
|
*/ |
| 114 |
< |
ElemType evaluateDerivative(const ElemType& x) { |
| 115 |
< |
ElemType result = ElemType(); |
| 114 |
> |
Real evaluateDerivative(const Real& x) { |
| 115 |
> |
Real result = Real(); |
| 116 |
|
ExponentType exponent; |
| 117 |
|
CoefficientType coefficient; |
| 118 |
|
|
| 119 |
|
for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { |
| 120 |
|
exponent = i->first; |
| 121 |
|
coefficient = i->second; |
| 122 |
< |
result += pow(x, exponent - 1) * coefficient * exponent; |
| 122 |
> |
result += fastpow(x, exponent - 1) * coefficient * exponent; |
| 123 |
|
} |
| 124 |
|
|
| 125 |
|
return result; |
| 126 |
|
} |
| 127 |
|
|
| 128 |
+ |
|
| 129 |
|
/** |
| 130 |
< |
* Set the coefficent of the specified exponent, if the coefficient is already there, it |
| 131 |
< |
* will be overwritten. |
| 130 |
> |
* Set the coefficent of the specified exponent, if the |
| 131 |
> |
* coefficient is already there, it will be overwritten. |
| 132 |
|
* @param exponent exponent of a term in this Polynomial |
| 133 |
|
* @param coefficient multiplier of a term in this Polynomial |
| 134 |
< |
*/ |
| 135 |
< |
|
| 136 |
< |
void setCoefficient(int exponent, const ElemType& coefficient) { |
| 132 |
< |
polyPairMap_.insert(typename PolynomialPairMap::value_type(exponent, coefficient)); |
| 134 |
> |
*/ |
| 135 |
> |
void setCoefficient(int exponent, const Real& coefficient) { |
| 136 |
> |
polyPairMap_[exponent] = coefficient; |
| 137 |
|
} |
| 138 |
< |
|
| 138 |
> |
|
| 139 |
|
/** |
| 140 |
< |
* Set the coefficent of the specified exponent. If the coefficient is already there, just add the |
| 141 |
< |
* new coefficient to the old one, otherwise, just call setCoefficent |
| 140 |
> |
* Set the coefficent of the specified exponent. If the |
| 141 |
> |
* coefficient is already there, just add the new coefficient to |
| 142 |
> |
* the old one, otherwise, just call setCoefficent |
| 143 |
|
* @param exponent exponent of a term in this Polynomial |
| 144 |
|
* @param coefficient multiplier of a term in this Polynomial |
| 145 |
< |
*/ |
| 146 |
< |
|
| 142 |
< |
void addCoefficient(int exponent, const ElemType& coefficient) { |
| 145 |
> |
*/ |
| 146 |
> |
void addCoefficient(int exponent, const Real& coefficient) { |
| 147 |
|
iterator i = polyPairMap_.find(exponent); |
| 148 |
|
|
| 149 |
|
if (i != end()) { |
| 153 |
|
} |
| 154 |
|
} |
| 155 |
|
|
| 152 |
– |
|
| 156 |
|
/** |
| 157 |
< |
* Returns the coefficient associated with the given power for this Polynomial. |
| 158 |
< |
* @return the coefficient associated with the given power for this Polynomial |
| 157 |
> |
* Returns the coefficient associated with the given power for |
| 158 |
> |
* this Polynomial. |
| 159 |
> |
* @return the coefficient associated with the given power for |
| 160 |
> |
* this Polynomial |
| 161 |
|
* @exponent exponent of any term in this Polynomial |
| 162 |
|
*/ |
| 163 |
< |
ElemType getCoefficient(ExponentType exponent) { |
| 163 |
> |
Real getCoefficient(ExponentType exponent) { |
| 164 |
|
iterator i = polyPairMap_.find(exponent); |
| 165 |
|
|
| 166 |
|
if (i != end()) { |
| 167 |
|
return i->second; |
| 168 |
|
} else { |
| 169 |
< |
return ElemType(0); |
| 169 |
> |
return Real(0); |
| 170 |
|
} |
| 171 |
|
} |
| 172 |
|
|
| 194 |
|
return polyPairMap_.size(); |
| 195 |
|
} |
| 196 |
|
|
| 197 |
< |
PolynomialType& operator += (const PolynomialType& p) { |
| 198 |
< |
typename Polynomial<ElemType>::const_iterator i; |
| 197 |
> |
int degree() { |
| 198 |
> |
int deg = 0; |
| 199 |
> |
for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { |
| 200 |
> |
if (i->first > deg) |
| 201 |
> |
deg = i->first; |
| 202 |
> |
} |
| 203 |
> |
return deg; |
| 204 |
> |
} |
| 205 |
|
|
| 206 |
< |
for (i = p.begin(); i != p.end(); ++i) { |
| 196 |
< |
this->addCoefficient(i->first, i->second); |
| 197 |
< |
} |
| 206 |
> |
PolynomialType& operator = (const PolynomialType& p) { |
| 207 |
|
|
| 208 |
< |
return *this; |
| 209 |
< |
} |
| 208 |
> |
if (this != &p) // protect against invalid self-assignment |
| 209 |
> |
{ |
| 210 |
> |
typename Polynomial<Real>::const_iterator i; |
| 211 |
|
|
| 212 |
< |
PolynomialType& operator -= (const PolynomialType& p) { |
| 213 |
< |
typename Polynomial<ElemType>::const_iterator i; |
| 214 |
< |
for (i = p.begin(); i != p.end(); ++i) { |
| 215 |
< |
this->addCoefficient(i->first, -i->second); |
| 216 |
< |
} |
| 217 |
< |
return *this; |
| 212 |
> |
polyPairMap_.clear(); // clear out the old map |
| 213 |
> |
|
| 214 |
> |
for (i = p.begin(); i != p.end(); ++i) { |
| 215 |
> |
this->setCoefficient(i->first, i->second); |
| 216 |
> |
} |
| 217 |
> |
} |
| 218 |
> |
// by convention, always return *this |
| 219 |
> |
return *this; |
| 220 |
|
} |
| 221 |
|
|
| 222 |
< |
PolynomialType& operator *= (const PolynomialType& p) { |
| 223 |
< |
typename Polynomial<ElemType>::const_iterator i; |
| 224 |
< |
typename Polynomial<ElemType>::const_iterator j; |
| 225 |
< |
|
| 226 |
< |
for (i = this->begin(); i !=this->end(); ++i) { |
| 215 |
< |
for (j = p.begin(); j !=p.end(); ++j) { |
| 216 |
< |
this->addCoefficient( i->first + j->first, i->second * j->second); |
| 222 |
> |
PolynomialType& operator += (const PolynomialType& p) { |
| 223 |
> |
typename Polynomial<Real>::const_iterator i; |
| 224 |
> |
|
| 225 |
> |
for (i = p.begin(); i != p.end(); ++i) { |
| 226 |
> |
this->addCoefficient(i->first, i->second); |
| 227 |
|
} |
| 228 |
+ |
|
| 229 |
+ |
return *this; |
| 230 |
|
} |
| 231 |
|
|
| 232 |
< |
return *this; |
| 232 |
> |
PolynomialType& operator -= (const PolynomialType& p) { |
| 233 |
> |
typename Polynomial<Real>::const_iterator i; |
| 234 |
> |
for (i = p.begin(); i != p.end(); ++i) { |
| 235 |
> |
this->addCoefficient(i->first, -i->second); |
| 236 |
> |
} |
| 237 |
> |
return *this; |
| 238 |
|
} |
| 239 |
+ |
|
| 240 |
+ |
PolynomialType& operator *= (const PolynomialType& p) { |
| 241 |
+ |
typename Polynomial<Real>::const_iterator i; |
| 242 |
+ |
typename Polynomial<Real>::const_iterator j; |
| 243 |
+ |
Polynomial<Real> p2(*this); |
| 244 |
+ |
|
| 245 |
+ |
polyPairMap_.clear(); // clear out old map |
| 246 |
+ |
for (i = p2.begin(); i !=p2.end(); ++i) { |
| 247 |
+ |
for (j = p.begin(); j !=p.end(); ++j) { |
| 248 |
+ |
this->addCoefficient( i->first + j->first, i->second * j->second); |
| 249 |
+ |
} |
| 250 |
+ |
} |
| 251 |
+ |
return *this; |
| 252 |
+ |
} |
| 253 |
+ |
|
| 254 |
+ |
//PolynomialType& operator *= (const Real v) |
| 255 |
+ |
PolynomialType& operator *= (const Real v) { |
| 256 |
+ |
typename Polynomial<Real>::const_iterator i; |
| 257 |
+ |
//Polynomial<Real> result; |
| 258 |
+ |
|
| 259 |
+ |
for (i = this->begin(); i != this->end(); ++i) { |
| 260 |
+ |
this->setCoefficient( i->first, i->second*v); |
| 261 |
+ |
} |
| 262 |
+ |
|
| 263 |
+ |
return *this; |
| 264 |
+ |
} |
| 265 |
+ |
|
| 266 |
+ |
PolynomialType& operator += (const Real v) { |
| 267 |
+ |
this->addCoefficient( 0, v); |
| 268 |
+ |
return *this; |
| 269 |
+ |
} |
| 270 |
+ |
|
| 271 |
+ |
/** |
| 272 |
+ |
* Returns the first derivative of this polynomial. |
| 273 |
+ |
* @return the first derivative of this polynomial |
| 274 |
+ |
*/ |
| 275 |
+ |
PolynomialType & getDerivative() { |
| 276 |
+ |
Polynomial<Real> p(); |
| 277 |
+ |
|
| 278 |
+ |
typename Polynomial<Real>::const_iterator i; |
| 279 |
+ |
ExponentType exponent; |
| 280 |
+ |
CoefficientType coefficient; |
| 281 |
+ |
|
| 282 |
+ |
for (i = this->begin(); i != this->end(); ++i) { |
| 283 |
+ |
exponent = i->first; |
| 284 |
+ |
coefficient = i->second; |
| 285 |
+ |
p.setCoefficient(exponent-1, coefficient * exponent); |
| 286 |
+ |
} |
| 287 |
+ |
|
| 288 |
+ |
return p; |
| 289 |
+ |
} |
| 290 |
+ |
|
| 291 |
+ |
// Creates the Companion matrix for a given polynomial |
| 292 |
+ |
DynamicRectMatrix<Real> CreateCompanion() { |
| 293 |
+ |
int rank = degree(); |
| 294 |
+ |
DynamicRectMatrix<Real> mat(rank, rank); |
| 295 |
+ |
Real majorCoeff = getCoefficient(rank); |
| 296 |
+ |
for(int i = 0; i < rank; ++i) { |
| 297 |
+ |
for(int j = 0; j < rank; ++j) { |
| 298 |
+ |
if(i - j == 1) { |
| 299 |
+ |
mat(i, j) = 1; |
| 300 |
+ |
} else if(j == rank-1) { |
| 301 |
+ |
mat(i, j) = -1 * getCoefficient(i) / majorCoeff; |
| 302 |
+ |
} |
| 303 |
+ |
} |
| 304 |
+ |
} |
| 305 |
+ |
return mat; |
| 306 |
+ |
} |
| 307 |
+ |
|
| 308 |
+ |
// Find the Roots of a given polynomial |
| 309 |
+ |
std::vector<complex<Real> > FindRoots() { |
| 310 |
+ |
int rank = degree(); |
| 311 |
+ |
DynamicRectMatrix<Real> companion = CreateCompanion(); |
| 312 |
+ |
JAMA::Eigenvalue<Real> eig(companion); |
| 313 |
+ |
DynamicVector<Real> reals, imags; |
| 314 |
+ |
eig.getRealEigenvalues(reals); |
| 315 |
+ |
eig.getImagEigenvalues(imags); |
| 316 |
+ |
|
| 317 |
+ |
std::vector<complex<Real> > roots; |
| 318 |
+ |
for (int i = 0; i < rank; i++) { |
| 319 |
+ |
roots.push_back(complex<Real>(reals(i), imags(i))); |
| 320 |
+ |
} |
| 321 |
+ |
|
| 322 |
+ |
return roots; |
| 323 |
+ |
} |
| 324 |
+ |
|
| 325 |
+ |
std::vector<Real> FindRealRoots() { |
| 326 |
+ |
|
| 327 |
+ |
const Real fEpsilon = 1.0e-8; |
| 328 |
+ |
std::vector<Real> roots; |
| 329 |
+ |
roots.clear(); |
| 330 |
+ |
|
| 331 |
+ |
const int deg = degree(); |
| 332 |
+ |
|
| 333 |
+ |
switch (deg) { |
| 334 |
+ |
case 1: { |
| 335 |
+ |
Real fC1 = getCoefficient(1); |
| 336 |
+ |
Real fC0 = getCoefficient(0); |
| 337 |
+ |
roots.push_back( -fC0 / fC1); |
| 338 |
+ |
return roots; |
| 339 |
+ |
} |
| 340 |
+ |
break; |
| 341 |
+ |
case 2: { |
| 342 |
+ |
Real fC2 = getCoefficient(2); |
| 343 |
+ |
Real fC1 = getCoefficient(1); |
| 344 |
+ |
Real fC0 = getCoefficient(0); |
| 345 |
+ |
Real fDiscr = fC1*fC1 - 4.0*fC0*fC2; |
| 346 |
+ |
if (abs(fDiscr) <= fEpsilon) { |
| 347 |
+ |
fDiscr = (Real)0.0; |
| 348 |
+ |
} |
| 349 |
+ |
|
| 350 |
+ |
if (fDiscr < (Real)0.0) { // complex roots only |
| 351 |
+ |
return roots; |
| 352 |
+ |
} |
| 353 |
+ |
|
| 354 |
+ |
Real fTmp = ((Real)0.5)/fC2; |
| 355 |
+ |
|
| 356 |
+ |
if (fDiscr > (Real)0.0) { // 2 real roots |
| 357 |
+ |
fDiscr = sqrt(fDiscr); |
| 358 |
+ |
roots.push_back(fTmp*(-fC1 - fDiscr)); |
| 359 |
+ |
roots.push_back(fTmp*(-fC1 + fDiscr)); |
| 360 |
+ |
} else { |
| 361 |
+ |
roots.push_back(-fTmp * fC1); // 1 real root |
| 362 |
+ |
} |
| 363 |
+ |
} |
| 364 |
+ |
return roots; |
| 365 |
+ |
break; |
| 366 |
+ |
|
| 367 |
+ |
case 3: { |
| 368 |
+ |
Real fC3 = getCoefficient(3); |
| 369 |
+ |
Real fC2 = getCoefficient(2); |
| 370 |
+ |
Real fC1 = getCoefficient(1); |
| 371 |
+ |
Real fC0 = getCoefficient(0); |
| 372 |
+ |
|
| 373 |
+ |
// make polynomial monic, x^3+c2*x^2+c1*x+c0 |
| 374 |
+ |
Real fInvC3 = ((Real)1.0)/fC3; |
| 375 |
+ |
fC0 *= fInvC3; |
| 376 |
+ |
fC1 *= fInvC3; |
| 377 |
+ |
fC2 *= fInvC3; |
| 378 |
+ |
|
| 379 |
+ |
// convert to y^3+a*y+b = 0 by x = y-c2/3 |
| 380 |
+ |
const Real fThird = (Real)1.0/(Real)3.0; |
| 381 |
+ |
const Real fTwentySeventh = (Real)1.0/(Real)27.0; |
| 382 |
+ |
Real fOffset = fThird*fC2; |
| 383 |
+ |
Real fA = fC1 - fC2*fOffset; |
| 384 |
+ |
Real fB = fC0+fC2*(((Real)2.0)*fC2*fC2-((Real)9.0)*fC1)*fTwentySeventh; |
| 385 |
+ |
Real fHalfB = ((Real)0.5)*fB; |
| 386 |
+ |
|
| 387 |
+ |
Real fDiscr = fHalfB*fHalfB + fA*fA*fA*fTwentySeventh; |
| 388 |
+ |
if (fabs(fDiscr) <= fEpsilon) { |
| 389 |
+ |
fDiscr = (Real)0.0; |
| 390 |
+ |
} |
| 391 |
+ |
|
| 392 |
+ |
if (fDiscr > (Real)0.0) { // 1 real, 2 complex roots |
| 393 |
+ |
|
| 394 |
+ |
fDiscr = sqrt(fDiscr); |
| 395 |
+ |
Real fTemp = -fHalfB + fDiscr; |
| 396 |
+ |
Real root; |
| 397 |
+ |
if (fTemp >= (Real)0.0) { |
| 398 |
+ |
root = pow(fTemp,fThird); |
| 399 |
+ |
} else { |
| 400 |
+ |
root = -pow(-fTemp,fThird); |
| 401 |
+ |
} |
| 402 |
+ |
fTemp = -fHalfB - fDiscr; |
| 403 |
+ |
if ( fTemp >= (Real)0.0 ) { |
| 404 |
+ |
root += pow(fTemp,fThird); |
| 405 |
+ |
} else { |
| 406 |
+ |
root -= pow(-fTemp,fThird); |
| 407 |
+ |
} |
| 408 |
+ |
root -= fOffset; |
| 409 |
+ |
|
| 410 |
+ |
roots.push_back(root); |
| 411 |
+ |
} else if (fDiscr < (Real)0.0) { |
| 412 |
+ |
const Real fSqrt3 = sqrt((Real)3.0); |
| 413 |
+ |
Real fDist = sqrt(-fThird*fA); |
| 414 |
+ |
Real fAngle = fThird*atan2(sqrt(-fDiscr), -fHalfB); |
| 415 |
+ |
Real fCos = cos(fAngle); |
| 416 |
+ |
Real fSin = sin(fAngle); |
| 417 |
+ |
roots.push_back(((Real)2.0)*fDist*fCos-fOffset); |
| 418 |
+ |
roots.push_back(-fDist*(fCos+fSqrt3*fSin)-fOffset); |
| 419 |
+ |
roots.push_back(-fDist*(fCos-fSqrt3*fSin)-fOffset); |
| 420 |
+ |
} else { |
| 421 |
+ |
Real fTemp; |
| 422 |
+ |
if (fHalfB >= (Real)0.0) { |
| 423 |
+ |
fTemp = -pow(fHalfB,fThird); |
| 424 |
+ |
} else { |
| 425 |
+ |
fTemp = pow(-fHalfB,fThird); |
| 426 |
+ |
} |
| 427 |
+ |
roots.push_back(((Real)2.0)*fTemp-fOffset); |
| 428 |
+ |
roots.push_back(-fTemp-fOffset); |
| 429 |
+ |
roots.push_back(-fTemp-fOffset); |
| 430 |
+ |
} |
| 431 |
+ |
} |
| 432 |
+ |
return roots; |
| 433 |
+ |
break; |
| 434 |
+ |
case 4: { |
| 435 |
+ |
Real fC4 = getCoefficient(4); |
| 436 |
+ |
Real fC3 = getCoefficient(3); |
| 437 |
+ |
Real fC2 = getCoefficient(2); |
| 438 |
+ |
Real fC1 = getCoefficient(1); |
| 439 |
+ |
Real fC0 = getCoefficient(0); |
| 440 |
+ |
|
| 441 |
+ |
// make polynomial monic, x^4+c3*x^3+c2*x^2+c1*x+c0 |
| 442 |
+ |
Real fInvC4 = ((Real)1.0)/fC4; |
| 443 |
+ |
fC0 *= fInvC4; |
| 444 |
+ |
fC1 *= fInvC4; |
| 445 |
+ |
fC2 *= fInvC4; |
| 446 |
+ |
fC3 *= fInvC4; |
| 447 |
+ |
|
| 448 |
+ |
// reduction to resolvent cubic polynomial y^3+r2*y^2+r1*y+r0 = 0 |
| 449 |
+ |
Real fR0 = -fC3*fC3*fC0 + ((Real)4.0)*fC2*fC0 - fC1*fC1; |
| 450 |
+ |
Real fR1 = fC3*fC1 - ((Real)4.0)*fC0; |
| 451 |
+ |
Real fR2 = -fC2; |
| 452 |
+ |
Polynomial<Real> tempCubic; |
| 453 |
+ |
tempCubic.setCoefficient(0, fR0); |
| 454 |
+ |
tempCubic.setCoefficient(1, fR1); |
| 455 |
+ |
tempCubic.setCoefficient(2, fR2); |
| 456 |
+ |
tempCubic.setCoefficient(3, 1.0); |
| 457 |
+ |
std::vector<Real> cubeRoots = tempCubic.FindRealRoots(); // always |
| 458 |
+ |
// produces |
| 459 |
+ |
// at |
| 460 |
+ |
// least |
| 461 |
+ |
// one |
| 462 |
+ |
// root |
| 463 |
+ |
Real fY = cubeRoots[0]; |
| 464 |
+ |
|
| 465 |
+ |
Real fDiscr = ((Real)0.25)*fC3*fC3 - fC2 + fY; |
| 466 |
+ |
if (fabs(fDiscr) <= fEpsilon) { |
| 467 |
+ |
fDiscr = (Real)0.0; |
| 468 |
+ |
} |
| 469 |
+ |
|
| 470 |
+ |
if (fDiscr > (Real)0.0) { |
| 471 |
+ |
Real fR = sqrt(fDiscr); |
| 472 |
+ |
Real fT1 = ((Real)0.75)*fC3*fC3 - fR*fR - ((Real)2.0)*fC2; |
| 473 |
+ |
Real fT2 = (((Real)4.0)*fC3*fC2 - ((Real)8.0)*fC1 - fC3*fC3*fC3) / |
| 474 |
+ |
(((Real)4.0)*fR); |
| 475 |
+ |
|
| 476 |
+ |
Real fTplus = fT1+fT2; |
| 477 |
+ |
Real fTminus = fT1-fT2; |
| 478 |
+ |
if (fabs(fTplus) <= fEpsilon) { |
| 479 |
+ |
fTplus = (Real)0.0; |
| 480 |
+ |
} |
| 481 |
+ |
if (fabs(fTminus) <= fEpsilon) { |
| 482 |
+ |
fTminus = (Real)0.0; |
| 483 |
+ |
} |
| 484 |
+ |
|
| 485 |
+ |
if (fTplus >= (Real)0.0) { |
| 486 |
+ |
Real fD = sqrt(fTplus); |
| 487 |
+ |
roots.push_back(-((Real)0.25)*fC3+((Real)0.5)*(fR+fD)); |
| 488 |
+ |
roots.push_back(-((Real)0.25)*fC3+((Real)0.5)*(fR-fD)); |
| 489 |
+ |
} |
| 490 |
+ |
if (fTminus >= (Real)0.0) { |
| 491 |
+ |
Real fE = sqrt(fTminus); |
| 492 |
+ |
roots.push_back(-((Real)0.25)*fC3+((Real)0.5)*(fE-fR)); |
| 493 |
+ |
roots.push_back(-((Real)0.25)*fC3-((Real)0.5)*(fE+fR)); |
| 494 |
+ |
} |
| 495 |
+ |
} else if (fDiscr < (Real)0.0) { |
| 496 |
+ |
//roots.clear(); |
| 497 |
+ |
} else { |
| 498 |
+ |
Real fT2 = fY*fY-((Real)4.0)*fC0; |
| 499 |
+ |
if (fT2 >= -fEpsilon) { |
| 500 |
+ |
if (fT2 < (Real)0.0) { // round to zero |
| 501 |
+ |
fT2 = (Real)0.0; |
| 502 |
+ |
} |
| 503 |
+ |
fT2 = ((Real)2.0)*sqrt(fT2); |
| 504 |
+ |
Real fT1 = ((Real)0.75)*fC3*fC3 - ((Real)2.0)*fC2; |
| 505 |
+ |
if (fT1+fT2 >= fEpsilon) { |
| 506 |
+ |
Real fD = sqrt(fT1+fT2); |
| 507 |
+ |
roots.push_back( -((Real)0.25)*fC3+((Real)0.5)*fD); |
| 508 |
+ |
roots.push_back( -((Real)0.25)*fC3-((Real)0.5)*fD); |
| 509 |
+ |
} |
| 510 |
+ |
if (fT1-fT2 >= fEpsilon) { |
| 511 |
+ |
Real fE = sqrt(fT1-fT2); |
| 512 |
+ |
roots.push_back( -((Real)0.25)*fC3+((Real)0.5)*fE); |
| 513 |
+ |
roots.push_back( -((Real)0.25)*fC3-((Real)0.5)*fE); |
| 514 |
+ |
} |
| 515 |
+ |
} |
| 516 |
+ |
} |
| 517 |
+ |
} |
| 518 |
+ |
return roots; |
| 519 |
+ |
break; |
| 520 |
+ |
default: { |
| 521 |
+ |
DynamicRectMatrix<Real> companion = CreateCompanion(); |
| 522 |
+ |
JAMA::Eigenvalue<Real> eig(companion); |
| 523 |
+ |
DynamicVector<Real> reals, imags; |
| 524 |
+ |
eig.getRealEigenvalues(reals); |
| 525 |
+ |
eig.getImagEigenvalues(imags); |
| 526 |
+ |
|
| 527 |
+ |
for (int i = 0; i < deg; i++) { |
| 528 |
+ |
if (fabs(imags(i)) < fEpsilon) |
| 529 |
+ |
roots.push_back(reals(i)); |
| 530 |
+ |
} |
| 531 |
+ |
} |
| 532 |
+ |
return roots; |
| 533 |
+ |
break; |
| 534 |
+ |
} |
| 535 |
|
|
| 536 |
+ |
return roots; // should be empty if you got here |
| 537 |
+ |
} |
| 538 |
|
|
| 539 |
|
private: |
| 540 |
|
|
| 541 |
|
PolynomialPairMap polyPairMap_; |
| 542 |
|
}; |
| 543 |
|
|
| 544 |
< |
|
| 544 |
> |
|
| 545 |
|
/** |
| 546 |
|
* Generates and returns the product of two given Polynomials. |
| 547 |
|
* @return A Polynomial containing the product of the two given Polynomial parameters |
| 548 |
|
*/ |
| 549 |
< |
template<typename ElemType> |
| 550 |
< |
Polynomial<ElemType> operator *(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { |
| 551 |
< |
typename Polynomial<ElemType>::const_iterator i; |
| 552 |
< |
typename Polynomial<ElemType>::const_iterator j; |
| 553 |
< |
Polynomial<ElemType> p; |
| 549 |
> |
template<typename Real> |
| 550 |
> |
Polynomial<Real> operator *(const Polynomial<Real>& p1, const Polynomial<Real>& p2) { |
| 551 |
> |
typename Polynomial<Real>::const_iterator i; |
| 552 |
> |
typename Polynomial<Real>::const_iterator j; |
| 553 |
> |
Polynomial<Real> p; |
| 554 |
|
|
| 555 |
|
for (i = p1.begin(); i !=p1.end(); ++i) { |
| 556 |
|
for (j = p2.begin(); j !=p2.end(); ++j) { |
| 561 |
|
return p; |
| 562 |
|
} |
| 563 |
|
|
| 564 |
< |
template<typename ElemType> |
| 565 |
< |
Polynomial<ElemType> operator *(const Polynomial<ElemType>& p, const ElemType v) { |
| 566 |
< |
typename Polynomial<ElemType>::const_iterator i; |
| 567 |
< |
Polynomial<ElemType> result; |
| 564 |
> |
template<typename Real> |
| 565 |
> |
Polynomial<Real> operator *(const Polynomial<Real>& p, const Real v) { |
| 566 |
> |
typename Polynomial<Real>::const_iterator i; |
| 567 |
> |
Polynomial<Real> result; |
| 568 |
|
|
| 569 |
|
for (i = p.begin(); i !=p.end(); ++i) { |
| 570 |
< |
result.addCoefficient( i->first , i->second * v); |
| 570 |
> |
result.setCoefficient( i->first , i->second * v); |
| 571 |
|
} |
| 572 |
|
|
| 573 |
|
return result; |
| 574 |
|
} |
| 575 |
|
|
| 576 |
< |
template<typename ElemType> |
| 577 |
< |
Polynomial<ElemType> operator *( const ElemType v, const Polynomial<ElemType>& p) { |
| 578 |
< |
typename Polynomial<ElemType>::const_iterator i; |
| 579 |
< |
Polynomial<ElemType> result; |
| 576 |
> |
template<typename Real> |
| 577 |
> |
Polynomial<Real> operator *( const Real v, const Polynomial<Real>& p) { |
| 578 |
> |
typename Polynomial<Real>::const_iterator i; |
| 579 |
> |
Polynomial<Real> result; |
| 580 |
|
|
| 581 |
|
for (i = p.begin(); i !=p.end(); ++i) { |
| 582 |
< |
result.addCoefficient( i->first , i->second * v); |
| 582 |
> |
result.setCoefficient( i->first , i->second * v); |
| 583 |
|
} |
| 584 |
|
|
| 585 |
|
return result; |
| 590 |
|
* @param p1 the first polynomial |
| 591 |
|
* @param p2 the second polynomial |
| 592 |
|
*/ |
| 593 |
< |
template<typename ElemType> |
| 594 |
< |
Polynomial<ElemType> operator +(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { |
| 595 |
< |
Polynomial<ElemType> p(p1); |
| 593 |
> |
template<typename Real> |
| 594 |
> |
Polynomial<Real> operator +(const Polynomial<Real>& p1, const Polynomial<Real>& p2) { |
| 595 |
> |
Polynomial<Real> p(p1); |
| 596 |
|
|
| 597 |
< |
typename Polynomial<ElemType>::const_iterator i; |
| 597 |
> |
typename Polynomial<Real>::const_iterator i; |
| 598 |
|
|
| 599 |
|
for (i = p2.begin(); i != p2.end(); ++i) { |
| 600 |
|
p.addCoefficient(i->first, i->second); |
| 610 |
|
* @param p1 the first polynomial |
| 611 |
|
* @param p2 the second polynomial |
| 612 |
|
*/ |
| 613 |
< |
template<typename ElemType> |
| 614 |
< |
Polynomial<ElemType> operator -(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { |
| 615 |
< |
Polynomial<ElemType> p(p1); |
| 613 |
> |
template<typename Real> |
| 614 |
> |
Polynomial<Real> operator -(const Polynomial<Real>& p1, const Polynomial<Real>& p2) { |
| 615 |
> |
Polynomial<Real> p(p1); |
| 616 |
|
|
| 617 |
< |
typename Polynomial<ElemType>::const_iterator i; |
| 617 |
> |
typename Polynomial<Real>::const_iterator i; |
| 618 |
|
|
| 619 |
|
for (i = p2.begin(); i != p2.end(); ++i) { |
| 620 |
|
p.addCoefficient(i->first, -i->second); |
| 625 |
|
} |
| 626 |
|
|
| 627 |
|
/** |
| 628 |
+ |
* Returns the first derivative of this polynomial. |
| 629 |
+ |
* @return the first derivative of this polynomial |
| 630 |
+ |
*/ |
| 631 |
+ |
template<typename Real> |
| 632 |
+ |
Polynomial<Real> getDerivative(const Polynomial<Real>& p1) { |
| 633 |
+ |
Polynomial<Real> p(); |
| 634 |
+ |
|
| 635 |
+ |
typename Polynomial<Real>::const_iterator i; |
| 636 |
+ |
int exponent; |
| 637 |
+ |
Real coefficient; |
| 638 |
+ |
|
| 639 |
+ |
for (i = p1.begin(); i != p1.end(); ++i) { |
| 640 |
+ |
exponent = i->first; |
| 641 |
+ |
coefficient = i->second; |
| 642 |
+ |
p.setCoefficient(exponent-1, coefficient * exponent); |
| 643 |
+ |
} |
| 644 |
+ |
|
| 645 |
+ |
return p; |
| 646 |
+ |
} |
| 647 |
+ |
|
| 648 |
+ |
/** |
| 649 |
|
* Tests if two polynomial have the same exponents |
| 650 |
< |
* @return true if these all of the exponents in these Polynomial are identical |
| 650 |
> |
* @return true if all of the exponents in these Polynomial are identical |
| 651 |
|
* @param p1 the first polynomial |
| 652 |
|
* @param p2 the second polynomial |
| 653 |
|
* @note this function does not compare the coefficient |
| 654 |
|
*/ |
| 655 |
< |
template<typename ElemType> |
| 656 |
< |
bool equal(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { |
| 655 |
> |
template<typename Real> |
| 656 |
> |
bool equal(const Polynomial<Real>& p1, const Polynomial<Real>& p2) { |
| 657 |
|
|
| 658 |
< |
typename Polynomial<ElemType>::const_iterator i; |
| 659 |
< |
typename Polynomial<ElemType>::const_iterator j; |
| 658 |
> |
typename Polynomial<Real>::const_iterator i; |
| 659 |
> |
typename Polynomial<Real>::const_iterator j; |
| 660 |
|
|
| 661 |
|
if (p1.size() != p2.size() ) { |
| 662 |
|
return false; |
| 671 |
|
return true; |
| 672 |
|
} |
| 673 |
|
|
| 338 |
– |
typedef Polynomial<double> DoublePolynomial; |
| 674 |
|
|
| 675 |
< |
} //end namespace oopse |
| 675 |
> |
|
| 676 |
> |
typedef Polynomial<RealType> DoublePolynomial; |
| 677 |
> |
|
| 678 |
> |
} //end namespace OpenMD |
| 679 |
|
#endif //MATH_POLYNOMIAL_HPP |