| 36 | 
  | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
  | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
  | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).           | 
| 39 | 
< | 
 * [4]  Vardeman & Gezelter, in progress (2009).                         | 
| 39 | 
> | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
> | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 42 | 
  | 
  | 
| 43 | 
  | 
/** | 
| 274 | 
  | 
     * @return the first derivative of this polynomial | 
| 275 | 
  | 
     */ | 
| 276 | 
  | 
    PolynomialType & getDerivative() { | 
| 277 | 
< | 
      Polynomial<Real> p(); | 
| 277 | 
> | 
      Polynomial<Real> p; | 
| 278 | 
  | 
       | 
| 279 | 
  | 
      typename Polynomial<Real>::const_iterator i; | 
| 280 | 
  | 
      ExponentType exponent; | 
| 337 | 
  | 
        Real fC0 = getCoefficient(0); | 
| 338 | 
  | 
        roots.push_back( -fC0 / fC1); | 
| 339 | 
  | 
        return roots; | 
| 339 | 
– | 
      } | 
| 340 | 
  | 
        break;       | 
| 341 | 
+ | 
      } | 
| 342 | 
  | 
      case 2: { | 
| 343 | 
  | 
        Real fC2 = getCoefficient(2); | 
| 344 | 
  | 
        Real fC1 = getCoefficient(1); | 
| 631 | 
  | 
   */ | 
| 632 | 
  | 
  template<typename Real> | 
| 633 | 
  | 
  Polynomial<Real> getDerivative(const Polynomial<Real>& p1) { | 
| 634 | 
< | 
    Polynomial<Real> p(); | 
| 634 | 
> | 
    Polynomial<Real> p; | 
| 635 | 
  | 
     | 
| 636 | 
  | 
    typename Polynomial<Real>::const_iterator i; | 
| 637 | 
  | 
    int exponent; |