| 1 | < | /* | 
| 1 | > | /* | 
| 2 |  | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 |  | * | 
| 4 |  | * The University of Notre Dame grants you ("Licensee") a | 
| 53 |  | #include <list> | 
| 54 |  | #include <map> | 
| 55 |  | #include <utility> | 
| 56 | < |  | 
| 56 | > | #include "config.h" | 
| 57 |  | namespace oopse { | 
| 58 |  |  | 
| 59 | < | template<typename ElemType> ElemType pow(ElemType x, int N) { | 
| 59 | > | template<typename ElemType> ElemType pow(ElemType x, int N) { | 
| 60 |  | ElemType result(1); | 
| 61 |  |  | 
| 62 |  | for (int i = 0; i < N; ++i) { | 
| 63 | < | result *= x; | 
| 63 | > | result *= x; | 
| 64 |  | } | 
| 65 |  |  | 
| 66 |  | return result; | 
| 67 | < | } | 
| 67 | > | } | 
| 68 |  |  | 
| 69 | < | /** | 
| 70 | < | * @class Polynomial Polynomial.hpp "math/Polynomial.hpp" | 
| 71 | < | * A generic Polynomial class | 
| 72 | < | */ | 
| 73 | < | template<typename ElemType> | 
| 74 | < | class Polynomial { | 
| 69 | > | /** | 
| 70 | > | * @class Polynomial Polynomial.hpp "math/Polynomial.hpp" | 
| 71 | > | * A generic Polynomial class | 
| 72 | > | */ | 
| 73 | > | template<typename ElemType> | 
| 74 | > | class Polynomial { | 
| 75 |  |  | 
| 76 | < | public: | 
| 77 | < |  | 
| 78 | < | typedef int ExponentType; | 
| 79 | < | typedef ElemType CoefficientType; | 
| 80 | < | typedef std::map<ExponentType, CoefficientType> PolynomialPairMap; | 
| 81 | < | typedef typename PolynomialPairMap::iterator iterator; | 
| 82 | < | typedef typename PolynomialPairMap::const_iterator const_iterator; | 
| 83 | < | /** | 
| 84 | < | * Calculates the value of this Polynomial evaluated at the given x value. | 
| 85 | < | * @return The value of this Polynomial evaluates at the given x value | 
| 86 | < | * @param x the value of the independent variable for this Polynomial function | 
| 87 | < | */ | 
| 88 | < | ElemType evaluate(const ElemType& x) { | 
| 89 | < | ElemType result = ElemType(); | 
| 90 | < | ExponentType exponent; | 
| 91 | < | CoefficientType coefficient; | 
| 76 | > | public: | 
| 77 | > | typedef Polynomial<ElemType> PolynomialType; | 
| 78 | > | typedef int ExponentType; | 
| 79 | > | typedef ElemType CoefficientType; | 
| 80 | > | typedef std::map<ExponentType, CoefficientType> PolynomialPairMap; | 
| 81 | > | typedef typename PolynomialPairMap::iterator iterator; | 
| 82 | > | typedef typename PolynomialPairMap::const_iterator const_iterator; | 
| 83 | > |  | 
| 84 | > | Polynomial() {} | 
| 85 | > | Polynomial(ElemType v) {setCoefficient(0, v);} | 
| 86 | > | /** | 
| 87 | > | * Calculates the value of this Polynomial evaluated at the given x value. | 
| 88 | > | * @return The value of this Polynomial evaluates at the given x value | 
| 89 | > | * @param x the value of the independent variable for this Polynomial function | 
| 90 | > | */ | 
| 91 | > | ElemType evaluate(const ElemType& x) { | 
| 92 | > | ElemType result = ElemType(); | 
| 93 | > | ExponentType exponent; | 
| 94 | > | CoefficientType coefficient; | 
| 95 |  |  | 
| 96 | < | for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { | 
| 97 | < | exponent = i->first; | 
| 98 | < | coefficient = i->second; | 
| 99 | < | result  += pow(x, exponent) * coefficient; | 
| 100 | < | } | 
| 96 | > | for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { | 
| 97 | > | exponent = i->first; | 
| 98 | > | coefficient = i->second; | 
| 99 | > | result  += pow(x, exponent) * coefficient; | 
| 100 | > | } | 
| 101 |  |  | 
| 102 | < | return result; | 
| 103 | < | } | 
| 102 | > | return result; | 
| 103 | > | } | 
| 104 |  |  | 
| 105 | < | /** | 
| 106 | < | * Returns the first derivative of this polynomial. | 
| 107 | < | * @return the first derivative of this polynomial | 
| 108 | < | * @param x | 
| 109 | < | */ | 
| 110 | < | ElemType evaluateDerivative(const ElemType& x) { | 
| 111 | < | ElemType result = ElemType(); | 
| 112 | < | ExponentType exponent; | 
| 113 | < | CoefficientType coefficient; | 
| 105 | > | /** | 
| 106 | > | * Returns the first derivative of this polynomial. | 
| 107 | > | * @return the first derivative of this polynomial | 
| 108 | > | * @param x | 
| 109 | > | */ | 
| 110 | > | ElemType evaluateDerivative(const ElemType& x) { | 
| 111 | > | ElemType result = ElemType(); | 
| 112 | > | ExponentType exponent; | 
| 113 | > | CoefficientType coefficient; | 
| 114 |  |  | 
| 115 | < | for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { | 
| 116 | < | exponent = i->first; | 
| 117 | < | coefficient = i->second; | 
| 118 | < | result  += pow(x, exponent - 1) * coefficient * exponent; | 
| 119 | < | } | 
| 115 | > | for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { | 
| 116 | > | exponent = i->first; | 
| 117 | > | coefficient = i->second; | 
| 118 | > | result  += pow(x, exponent - 1) * coefficient * exponent; | 
| 119 | > | } | 
| 120 |  |  | 
| 121 | < | return result; | 
| 122 | < | } | 
| 121 | > | return result; | 
| 122 | > | } | 
| 123 |  |  | 
| 124 | < | /** | 
| 125 | < | * Set the coefficent of the specified exponent, if the coefficient is already there, it | 
| 126 | < | * will be overwritten. | 
| 127 | < | * @param exponent exponent of a term in this Polynomial | 
| 128 | < | * @param coefficient multiplier of a term in this Polynomial | 
| 129 | < | */ | 
| 124 | > | /** | 
| 125 | > | * Set the coefficent of the specified exponent, if the coefficient is already there, it | 
| 126 | > | * will be overwritten. | 
| 127 | > | * @param exponent exponent of a term in this Polynomial | 
| 128 | > | * @param coefficient multiplier of a term in this Polynomial | 
| 129 | > | */ | 
| 130 |  |  | 
| 131 | < | void setCoefficient(int exponent, const ElemType& coefficient) { | 
| 132 | < | polyPairMap_.insert(typename PolynomialPairMap::value_type(exponent, coefficient)); | 
| 133 | < | } | 
| 131 | > | void setCoefficient(int exponent, const ElemType& coefficient) { | 
| 132 | > | polyPairMap_.insert(typename PolynomialPairMap::value_type(exponent, coefficient)); | 
| 133 | > | } | 
| 134 |  |  | 
| 135 | < | /** | 
| 136 | < | * Set the coefficent of the specified exponent. If the coefficient is already there,  just add the | 
| 137 | < | * new coefficient to the old one, otherwise,  just call setCoefficent | 
| 138 | < | * @param exponent exponent of a term in this Polynomial | 
| 139 | < | * @param coefficient multiplier of a term in this Polynomial | 
| 140 | < | */ | 
| 135 | > | /** | 
| 136 | > | * Set the coefficent of the specified exponent. If the coefficient is already there,  just add the | 
| 137 | > | * new coefficient to the old one, otherwise,  just call setCoefficent | 
| 138 | > | * @param exponent exponent of a term in this Polynomial | 
| 139 | > | * @param coefficient multiplier of a term in this Polynomial | 
| 140 | > | */ | 
| 141 |  |  | 
| 142 | < | void addCoefficient(int exponent, const ElemType& coefficient) { | 
| 143 | < | iterator i = polyPairMap_.find(exponent); | 
| 142 | > | void addCoefficient(int exponent, const ElemType& coefficient) { | 
| 143 | > | iterator i = polyPairMap_.find(exponent); | 
| 144 |  |  | 
| 145 | < | if (i != end()) { | 
| 146 | < | i->second += coefficient; | 
| 147 | < | } else { | 
| 148 | < | setCoefficient(exponent, coefficient); | 
| 149 | < | } | 
| 150 | < | } | 
| 145 | > | if (i != end()) { | 
| 146 | > | i->second += coefficient; | 
| 147 | > | } else { | 
| 148 | > | setCoefficient(exponent, coefficient); | 
| 149 | > | } | 
| 150 | > | } | 
| 151 |  |  | 
| 152 |  |  | 
| 153 | < | /** | 
| 154 | < | * Returns the coefficient associated with the given power for this Polynomial. | 
| 155 | < | * @return the coefficient associated with the given power for this Polynomial | 
| 156 | < | * @exponent exponent of any term in this Polynomial | 
| 157 | < | */ | 
| 158 | < | ElemType getCoefficient(ExponentType exponent) { | 
| 159 | < | iterator i = polyPairMap_.find(exponent); | 
| 153 | > | /** | 
| 154 | > | * Returns the coefficient associated with the given power for this Polynomial. | 
| 155 | > | * @return the coefficient associated with the given power for this Polynomial | 
| 156 | > | * @exponent exponent of any term in this Polynomial | 
| 157 | > | */ | 
| 158 | > | ElemType getCoefficient(ExponentType exponent) { | 
| 159 | > | iterator i = polyPairMap_.find(exponent); | 
| 160 |  |  | 
| 161 | < | if (i != end()) { | 
| 162 | < | return i->second; | 
| 163 | < | } else { | 
| 164 | < | return ElemType(0); | 
| 165 | < | } | 
| 166 | < | } | 
| 161 | > | if (i != end()) { | 
| 162 | > | return i->second; | 
| 163 | > | } else { | 
| 164 | > | return ElemType(0); | 
| 165 | > | } | 
| 166 | > | } | 
| 167 |  |  | 
| 168 | < | iterator begin() { | 
| 169 | < | return polyPairMap_.begin(); | 
| 170 | < | } | 
| 168 | > | iterator begin() { | 
| 169 | > | return polyPairMap_.begin(); | 
| 170 | > | } | 
| 171 |  |  | 
| 172 | < | const_iterator begin() const{ | 
| 173 | < | return polyPairMap_.begin(); | 
| 174 | < | } | 
| 172 | > | const_iterator begin() const{ | 
| 173 | > | return polyPairMap_.begin(); | 
| 174 | > | } | 
| 175 |  |  | 
| 176 | < | iterator end() { | 
| 177 | < | return polyPairMap_.end(); | 
| 178 | < | } | 
| 176 | < |  | 
| 177 | < | const_iterator end() const{ | 
| 178 | < | return polyPairMap_.end(); | 
| 179 | < | } | 
| 176 | > | iterator end() { | 
| 177 | > | return polyPairMap_.end(); | 
| 178 | > | } | 
| 179 |  |  | 
| 180 | < | iterator find(ExponentType exponent) { | 
| 181 | < | return polyPairMap_.find(exponent); | 
| 180 | > | const_iterator end() const{ | 
| 181 | > | return polyPairMap_.end(); | 
| 182 | > | } | 
| 183 | > |  | 
| 184 | > | iterator find(ExponentType exponent) { | 
| 185 | > | return polyPairMap_.find(exponent); | 
| 186 | > | } | 
| 187 | > |  | 
| 188 | > | size_t size() { | 
| 189 | > | return polyPairMap_.size(); | 
| 190 | > | } | 
| 191 | > |  | 
| 192 | > | PolynomialType& operator = (const PolynomialType& p) { | 
| 193 | > |  | 
| 194 | > | if (this != &p)  // protect against invalid self-assignment | 
| 195 | > | { | 
| 196 | > | typename Polynomial<ElemType>::const_iterator i; | 
| 197 | > |  | 
| 198 | > | polyPairMap_.clear();  // clear out the old map | 
| 199 | > |  | 
| 200 | > | for (i =  p.begin(); i != p.end(); ++i) { | 
| 201 | > | this->setCoefficient(i->first, i->second); | 
| 202 |  | } | 
| 203 | + | } | 
| 204 | + | // by convention, always return *this | 
| 205 | + | return *this; | 
| 206 | + | } | 
| 207 |  |  | 
| 208 | < | size_t size() { | 
| 209 | < | return polyPairMap_.size(); | 
| 208 | > | PolynomialType& operator += (const PolynomialType& p) { | 
| 209 | > | typename Polynomial<ElemType>::const_iterator i; | 
| 210 | > |  | 
| 211 | > | for (i =  p.begin(); i  != p.end(); ++i) { | 
| 212 | > | this->addCoefficient(i->first, i->second); | 
| 213 |  | } | 
| 214 | + |  | 
| 215 | + | return *this; | 
| 216 | + | } | 
| 217 | + |  | 
| 218 | + | PolynomialType& operator -= (const PolynomialType& p) { | 
| 219 | + | typename Polynomial<ElemType>::const_iterator i; | 
| 220 | + | for (i =  p.begin(); i  != p.end(); ++i) { | 
| 221 | + | this->addCoefficient(i->first, -i->second); | 
| 222 | + | } | 
| 223 | + | return *this; | 
| 224 | + | } | 
| 225 | + |  | 
| 226 | + | PolynomialType& operator *= (const PolynomialType& p) { | 
| 227 | + | typename Polynomial<ElemType>::const_iterator i; | 
| 228 | + | typename Polynomial<ElemType>::const_iterator j; | 
| 229 | + |  | 
| 230 | + | for (i = this->begin(); i !=this->end(); ++i) { | 
| 231 | + | for (j = p.begin(); j !=p.end(); ++j) { | 
| 232 | + | this->addCoefficient( i->first + j->first, i->second * j->second); | 
| 233 | + | } | 
| 234 | + | } | 
| 235 | + |  | 
| 236 | + | return *this; | 
| 237 | + | } | 
| 238 | + |  | 
| 239 | + |  | 
| 240 | + | private: | 
| 241 |  |  | 
| 242 | < | private: | 
| 243 | < |  | 
| 191 | < | PolynomialPairMap polyPairMap_; | 
| 192 | < | }; | 
| 242 | > | PolynomialPairMap polyPairMap_; | 
| 243 | > | }; | 
| 244 |  |  | 
| 245 |  |  | 
| 246 | < | /** | 
| 247 | < | * Generates and returns the product of two given Polynomials. | 
| 248 | < | * @return A Polynomial containing the product of the two given Polynomial parameters | 
| 249 | < | */ | 
| 250 | < | template<typename ElemType> | 
| 251 | < | Polynomial<ElemType> operator *(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 246 | > | /** | 
| 247 | > | * Generates and returns the product of two given Polynomials. | 
| 248 | > | * @return A Polynomial containing the product of the two given Polynomial parameters | 
| 249 | > | */ | 
| 250 | > | template<typename ElemType> | 
| 251 | > | Polynomial<ElemType> operator *(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 252 |  | typename Polynomial<ElemType>::const_iterator i; | 
| 253 |  | typename Polynomial<ElemType>::const_iterator j; | 
| 254 |  | Polynomial<ElemType> p; | 
| 255 |  |  | 
| 256 |  | for (i = p1.begin(); i !=p1.end(); ++i) { | 
| 257 | < | for (j = p2.begin(); j !=p2.end(); ++j) { | 
| 258 | < | p.addCoefficient( i->first + j->first, i->second * j->second); | 
| 259 | < | } | 
| 257 | > | for (j = p2.begin(); j !=p2.end(); ++j) { | 
| 258 | > | p.addCoefficient( i->first + j->first, i->second * j->second); | 
| 259 | > | } | 
| 260 |  | } | 
| 261 |  |  | 
| 262 |  | return p; | 
| 263 | < | } | 
| 263 | > | } | 
| 264 |  |  | 
| 265 | < | /** | 
| 266 | < | * Generates and returns the sum of two given Polynomials. | 
| 267 | < | * @param p1 the first polynomial | 
| 268 | < | * @param p2 the second polynomial | 
| 269 | < | */ | 
| 270 | < | template<typename ElemType> | 
| 271 | < | Polynomial<ElemType> operator +(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 265 | > | template<typename ElemType> | 
| 266 | > | Polynomial<ElemType> operator *(const Polynomial<ElemType>& p, const ElemType v) { | 
| 267 | > | typename Polynomial<ElemType>::const_iterator i; | 
| 268 | > | Polynomial<ElemType> result; | 
| 269 | > |  | 
| 270 | > | for (i = p.begin(); i !=p.end(); ++i) { | 
| 271 | > | result.addCoefficient( i->first , i->second * v); | 
| 272 | > | } | 
| 273 | > |  | 
| 274 | > | return result; | 
| 275 | > | } | 
| 276 | > |  | 
| 277 | > | template<typename ElemType> | 
| 278 | > | Polynomial<ElemType> operator *( const ElemType v, const Polynomial<ElemType>& p) { | 
| 279 | > | typename Polynomial<ElemType>::const_iterator i; | 
| 280 | > | Polynomial<ElemType> result; | 
| 281 | > |  | 
| 282 | > | for (i = p.begin(); i !=p.end(); ++i) { | 
| 283 | > | result.addCoefficient( i->first , i->second * v); | 
| 284 | > | } | 
| 285 | > |  | 
| 286 | > | return result; | 
| 287 | > | } | 
| 288 | > |  | 
| 289 | > | /** | 
| 290 | > | * Generates and returns the sum of two given Polynomials. | 
| 291 | > | * @param p1 the first polynomial | 
| 292 | > | * @param p2 the second polynomial | 
| 293 | > | */ | 
| 294 | > | template<typename ElemType> | 
| 295 | > | Polynomial<ElemType> operator +(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 296 |  | Polynomial<ElemType> p(p1); | 
| 297 |  |  | 
| 298 |  | typename Polynomial<ElemType>::const_iterator i; | 
| 299 |  |  | 
| 300 |  | for (i =  p2.begin(); i  != p2.end(); ++i) { | 
| 301 | < | p.addCoefficient(i->first, i->second); | 
| 301 | > | p.addCoefficient(i->first, i->second); | 
| 302 |  | } | 
| 303 |  |  | 
| 304 |  | return p; | 
| 305 |  |  | 
| 306 | < | } | 
| 306 | > | } | 
| 307 |  |  | 
| 308 | < | /** | 
| 309 | < | * Generates and returns the difference of two given Polynomials. | 
| 310 | < | * @return | 
| 311 | < | * @param p1 the first polynomial | 
| 312 | < | * @param p2 the second polynomial | 
| 313 | < | */ | 
| 314 | < | template<typename ElemType> | 
| 315 | < | Polynomial<ElemType> operator -(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 308 | > | /** | 
| 309 | > | * Generates and returns the difference of two given Polynomials. | 
| 310 | > | * @return | 
| 311 | > | * @param p1 the first polynomial | 
| 312 | > | * @param p2 the second polynomial | 
| 313 | > | */ | 
| 314 | > | template<typename ElemType> | 
| 315 | > | Polynomial<ElemType> operator -(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 316 |  | Polynomial<ElemType> p(p1); | 
| 317 |  |  | 
| 318 |  | typename Polynomial<ElemType>::const_iterator i; | 
| 319 |  |  | 
| 320 |  | for (i =  p2.begin(); i  != p2.end(); ++i) { | 
| 321 | < | p.addCoefficient(i->first, -i->second); | 
| 321 | > | p.addCoefficient(i->first, -i->second); | 
| 322 |  | } | 
| 323 |  |  | 
| 324 |  | return p; | 
| 325 |  |  | 
| 326 | < | } | 
| 326 | > | } | 
| 327 |  |  | 
| 328 | < | /** | 
| 329 | < | * Tests if two polynomial have the same exponents | 
| 330 | < | * @return true if these all of the exponents in these Polynomial are identical | 
| 331 | < | * @param p1 the first polynomial | 
| 332 | < | * @param p2 the second polynomial | 
| 333 | < | * @note this function does not compare the coefficient | 
| 334 | < | */ | 
| 335 | < | template<typename ElemType> | 
| 336 | < | bool equal(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 328 | > | /** | 
| 329 | > | * Tests if two polynomial have the same exponents | 
| 330 | > | * @return true if all of the exponents in these Polynomial are identical | 
| 331 | > | * @param p1 the first polynomial | 
| 332 | > | * @param p2 the second polynomial | 
| 333 | > | * @note this function does not compare the coefficient | 
| 334 | > | */ | 
| 335 | > | template<typename ElemType> | 
| 336 | > | bool equal(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 337 |  |  | 
| 338 |  | typename Polynomial<ElemType>::const_iterator i; | 
| 339 |  | typename Polynomial<ElemType>::const_iterator j; | 
| 340 |  |  | 
| 341 |  | if (p1.size() != p2.size() ) { | 
| 342 | < | return false; | 
| 342 | > | return false; | 
| 343 |  | } | 
| 344 |  |  | 
| 345 |  | for (i =  p1.begin(), j = p2.begin(); i  != p1.end() && j != p2.end(); ++i, ++j) { | 
| 346 | < | if (i->first != j->first) { | 
| 347 | < | return false; | 
| 348 | < | } | 
| 346 | > | if (i->first != j->first) { | 
| 347 | > | return false; | 
| 348 | > | } | 
| 349 |  | } | 
| 350 |  |  | 
| 351 |  | return true; | 
| 352 | < | } | 
| 352 | > | } | 
| 353 |  |  | 
| 354 | < | typedef Polynomial<double> DoublePolynomial; | 
| 354 | > | typedef Polynomial<RealType> DoublePolynomial; | 
| 355 |  |  | 
| 356 |  | } //end namespace oopse | 
| 357 |  | #endif //MATH_POLYNOMIAL_HPP |