| 1 | < | /* | 
| 1 | > | /* | 
| 2 |  | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 |  | * | 
| 4 |  | * The University of Notre Dame grants you ("Licensee") a | 
| 6 |  | * redistribute this software in source and binary code form, provided | 
| 7 |  | * that the following conditions are met: | 
| 8 |  | * | 
| 9 | < | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | < | *    publication of scientific results based in part on use of the | 
| 11 | < | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | < | *    the article in which the program was described (Matthew | 
| 13 | < | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | < | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | < | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | < | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | < | * | 
| 18 | < | * 2. Redistributions of source code must retain the above copyright | 
| 9 | > | * 1. Redistributions of source code must retain the above copyright | 
| 10 |  | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  | * | 
| 12 | < | * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | > | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 |  | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  | *    documentation and/or other materials provided with the | 
| 15 |  | *    distribution. | 
| 28 |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  | * such damages. | 
| 31 | + | * | 
| 32 | + | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | + | * research, please cite the appropriate papers when you publish your | 
| 34 | + | * work.  Good starting points are: | 
| 35 | + | * | 
| 36 | + | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | + | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | + | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | + | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | + | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 42 |  |  | 
| 43 |  | /** | 
| 54 |  | #include <list> | 
| 55 |  | #include <map> | 
| 56 |  | #include <utility> | 
| 57 | + | #include <complex> | 
| 58 | + | #include "config.h" | 
| 59 | + | #include "math/Eigenvalue.hpp" | 
| 60 |  |  | 
| 61 | < | namespace oopse { | 
| 61 | > | namespace OpenMD { | 
| 62 | > |  | 
| 63 | > | template<typename Real> Real fastpow(Real x, int N) { | 
| 64 | > | Real result(1); //or 1.0? | 
| 65 |  |  | 
| 59 | – | template<typename ElemType> ElemType pow(ElemType x, int N) { | 
| 60 | – | ElemType result(1); | 
| 61 | – |  | 
| 66 |  | for (int i = 0; i < N; ++i) { | 
| 67 | < | result *= x; | 
| 67 | > | result *= x; | 
| 68 |  | } | 
| 69 |  |  | 
| 70 |  | return result; | 
| 71 | < | } | 
| 71 | > | } | 
| 72 |  |  | 
| 73 | < | /** | 
| 74 | < | * @class Polynomial Polynomial.hpp "math/Polynomial.hpp" | 
| 75 | < | * A generic Polynomial class | 
| 76 | < | */ | 
| 77 | < | template<typename ElemType> | 
| 78 | < | class Polynomial { | 
| 73 | > | /** | 
| 74 | > | * @class Polynomial Polynomial.hpp "math/Polynomial.hpp" | 
| 75 | > | * A generic Polynomial class | 
| 76 | > | */ | 
| 77 | > | template<typename Real> | 
| 78 | > | class Polynomial { | 
| 79 |  |  | 
| 80 | < | public: | 
| 81 | < |  | 
| 82 | < | typedef int ExponentType; | 
| 83 | < | typedef ElemType CoefficientType; | 
| 84 | < | typedef std::map<ExponentType, CoefficientType> PolynomialPairMap; | 
| 85 | < | typedef typename PolynomialPairMap::iterator iterator; | 
| 86 | < | typedef typename PolynomialPairMap::const_iterator const_iterator; | 
| 87 | < | /** | 
| 88 | < | * Calculates the value of this Polynomial evaluated at the given x value. | 
| 89 | < | * @return The value of this Polynomial evaluates at the given x value | 
| 90 | < | * @param x the value of the independent variable for this Polynomial function | 
| 91 | < | */ | 
| 92 | < | ElemType evaluate(const ElemType& x) { | 
| 93 | < | ElemType result = ElemType(); | 
| 94 | < | ExponentType exponent; | 
| 95 | < | CoefficientType coefficient; | 
| 80 | > | public: | 
| 81 | > | typedef Polynomial<Real> PolynomialType; | 
| 82 | > | typedef int ExponentType; | 
| 83 | > | typedef Real CoefficientType; | 
| 84 | > | typedef std::map<ExponentType, CoefficientType> PolynomialPairMap; | 
| 85 | > | typedef typename PolynomialPairMap::iterator iterator; | 
| 86 | > | typedef typename PolynomialPairMap::const_iterator const_iterator; | 
| 87 | > |  | 
| 88 | > | Polynomial() {} | 
| 89 | > | Polynomial(Real v) {setCoefficient(0, v);} | 
| 90 | > | /** | 
| 91 | > | * Calculates the value of this Polynomial evaluated at the given x value. | 
| 92 | > | * @return The value of this Polynomial evaluates at the given x value | 
| 93 | > | * @param x the value of the independent variable for this | 
| 94 | > | * Polynomial function | 
| 95 | > | */ | 
| 96 | > | Real evaluate(const Real& x) { | 
| 97 | > | Real result = Real(); | 
| 98 | > | ExponentType exponent; | 
| 99 | > | CoefficientType coefficient; | 
| 100 |  |  | 
| 101 | < | for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { | 
| 102 | < | exponent = i->first; | 
| 103 | < | coefficient = i->second; | 
| 104 | < | result  += pow(x, exponent) * coefficient; | 
| 105 | < | } | 
| 101 | > | for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { | 
| 102 | > | exponent = i->first; | 
| 103 | > | coefficient = i->second; | 
| 104 | > | result  += fastpow(x, exponent) * coefficient; | 
| 105 | > | } | 
| 106 |  |  | 
| 107 | < | return result; | 
| 108 | < | } | 
| 107 | > | return result; | 
| 108 | > | } | 
| 109 |  |  | 
| 110 | < | /** | 
| 111 | < | * Returns the first derivative of this polynomial. | 
| 112 | < | * @return the first derivative of this polynomial | 
| 113 | < | * @param x | 
| 114 | < | */ | 
| 115 | < | ElemType evaluateDerivative(const ElemType& x) { | 
| 116 | < | ElemType result = ElemType(); | 
| 117 | < | ExponentType exponent; | 
| 118 | < | CoefficientType coefficient; | 
| 110 | > | /** | 
| 111 | > | * Returns the first derivative of this polynomial. | 
| 112 | > | * @return the first derivative of this polynomial | 
| 113 | > | * @param x | 
| 114 | > | */ | 
| 115 | > | Real evaluateDerivative(const Real& x) { | 
| 116 | > | Real result = Real(); | 
| 117 | > | ExponentType exponent; | 
| 118 | > | CoefficientType coefficient; | 
| 119 |  |  | 
| 120 | < | for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { | 
| 121 | < | exponent = i->first; | 
| 122 | < | coefficient = i->second; | 
| 123 | < | result  += pow(x, exponent - 1) * coefficient * exponent; | 
| 124 | < | } | 
| 120 | > | for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { | 
| 121 | > | exponent = i->first; | 
| 122 | > | coefficient = i->second; | 
| 123 | > | result  += fastpow(x, exponent - 1) * coefficient * exponent; | 
| 124 | > | } | 
| 125 |  |  | 
| 126 | < | return result; | 
| 127 | < | } | 
| 126 | > | return result; | 
| 127 | > | } | 
| 128 |  |  | 
| 121 | – | /** | 
| 122 | – | * Set the coefficent of the specified exponent, if the coefficient is already there, it | 
| 123 | – | * will be overwritten. | 
| 124 | – | * @param exponent exponent of a term in this Polynomial | 
| 125 | – | * @param coefficient multiplier of a term in this Polynomial | 
| 126 | – | */ | 
| 127 | – |  | 
| 128 | – | void setCoefficient(int exponent, const ElemType& coefficient) { | 
| 129 | – | polyPairMap_.insert(typename PolynomialPairMap::value_type(exponent, coefficient)); | 
| 130 | – | } | 
| 129 |  |  | 
| 130 | < | /** | 
| 131 | < | * Set the coefficent of the specified exponent. If the coefficient is already there,  just add the | 
| 132 | < | * new coefficient to the old one, otherwise,  just call setCoefficent | 
| 133 | < | * @param exponent exponent of a term in this Polynomial | 
| 134 | < | * @param coefficient multiplier of a term in this Polynomial | 
| 135 | < | */ | 
| 136 | < |  | 
| 137 | < | void addCoefficient(int exponent, const ElemType& coefficient) { | 
| 138 | < | iterator i = polyPairMap_.find(exponent); | 
| 130 | > | /** | 
| 131 | > | * Set the coefficent of the specified exponent, if the | 
| 132 | > | * coefficient is already there, it will be overwritten. | 
| 133 | > | * @param exponent exponent of a term in this Polynomial | 
| 134 | > | * @param coefficient multiplier of a term in this Polynomial | 
| 135 | > | */ | 
| 136 | > | void setCoefficient(int exponent, const Real& coefficient) { | 
| 137 | > | polyPairMap_[exponent] = coefficient; | 
| 138 | > | } | 
| 139 | > |  | 
| 140 | > | /** | 
| 141 | > | * Set the coefficent of the specified exponent. If the | 
| 142 | > | * coefficient is already there, just add the new coefficient to | 
| 143 | > | * the old one, otherwise, just call setCoefficent | 
| 144 | > | * @param exponent exponent of a term in this Polynomial | 
| 145 | > | * @param coefficient multiplier of a term in this Polynomial | 
| 146 | > | */ | 
| 147 | > | void addCoefficient(int exponent, const Real& coefficient) { | 
| 148 | > | iterator i = polyPairMap_.find(exponent); | 
| 149 |  |  | 
| 150 | < | if (i != end()) { | 
| 151 | < | i->second += coefficient; | 
| 152 | < | } else { | 
| 153 | < | setCoefficient(exponent, coefficient); | 
| 154 | < | } | 
| 155 | < | } | 
| 150 | > | if (i != end()) { | 
| 151 | > | i->second += coefficient; | 
| 152 | > | } else { | 
| 153 | > | setCoefficient(exponent, coefficient); | 
| 154 | > | } | 
| 155 | > | } | 
| 156 |  |  | 
| 157 | < |  | 
| 158 | < | /** | 
| 159 | < | * Returns the coefficient associated with the given power for this Polynomial. | 
| 160 | < | * @return the coefficient associated with the given power for this Polynomial | 
| 161 | < | * @exponent exponent of any term in this Polynomial | 
| 162 | < | */ | 
| 163 | < | ElemType getCoefficient(ExponentType exponent) { | 
| 164 | < | iterator i = polyPairMap_.find(exponent); | 
| 165 | < |  | 
| 158 | < | if (i != end()) { | 
| 159 | < | return i->second; | 
| 160 | < | } else { | 
| 161 | < | return ElemType(0); | 
| 162 | < | } | 
| 163 | < | } | 
| 157 | > | /** | 
| 158 | > | * Returns the coefficient associated with the given power for | 
| 159 | > | * this Polynomial. | 
| 160 | > | * @return the coefficient associated with the given power for | 
| 161 | > | * this Polynomial | 
| 162 | > | * @exponent exponent of any term in this Polynomial | 
| 163 | > | */ | 
| 164 | > | Real getCoefficient(ExponentType exponent) { | 
| 165 | > | iterator i = polyPairMap_.find(exponent); | 
| 166 |  |  | 
| 167 | < | iterator begin() { | 
| 168 | < | return polyPairMap_.begin(); | 
| 169 | < | } | 
| 167 | > | if (i != end()) { | 
| 168 | > | return i->second; | 
| 169 | > | } else { | 
| 170 | > | return Real(0); | 
| 171 | > | } | 
| 172 | > | } | 
| 173 |  |  | 
| 174 | < | const_iterator begin() const{ | 
| 175 | < | return polyPairMap_.begin(); | 
| 176 | < | } | 
| 174 | > | iterator begin() { | 
| 175 | > | return polyPairMap_.begin(); | 
| 176 | > | } | 
| 177 | > |  | 
| 178 | > | const_iterator begin() const{ | 
| 179 | > | return polyPairMap_.begin(); | 
| 180 | > | } | 
| 181 |  |  | 
| 182 | < | iterator end() { | 
| 183 | < | return polyPairMap_.end(); | 
| 184 | < | } | 
| 182 | > | iterator end() { | 
| 183 | > | return polyPairMap_.end(); | 
| 184 | > | } | 
| 185 |  |  | 
| 186 | < | const_iterator end() const{ | 
| 187 | < | return polyPairMap_.end(); | 
| 186 | > | const_iterator end() const{ | 
| 187 | > | return polyPairMap_.end(); | 
| 188 | > | } | 
| 189 | > |  | 
| 190 | > | iterator find(ExponentType exponent) { | 
| 191 | > | return polyPairMap_.find(exponent); | 
| 192 | > | } | 
| 193 | > |  | 
| 194 | > | size_t size() { | 
| 195 | > | return polyPairMap_.size(); | 
| 196 | > | } | 
| 197 | > |  | 
| 198 | > | int degree() { | 
| 199 | > | int deg = 0; | 
| 200 | > | for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { | 
| 201 | > | if (i->first > deg) | 
| 202 | > | deg = i->first; | 
| 203 | > | } | 
| 204 | > | return deg; | 
| 205 | > | } | 
| 206 | > |  | 
| 207 | > | PolynomialType& operator = (const PolynomialType& p) { | 
| 208 | > |  | 
| 209 | > | if (this != &p)  // protect against invalid self-assignment | 
| 210 | > | { | 
| 211 | > | typename Polynomial<Real>::const_iterator i; | 
| 212 | > |  | 
| 213 | > | polyPairMap_.clear();  // clear out the old map | 
| 214 | > |  | 
| 215 | > | for (i =  p.begin(); i != p.end(); ++i) { | 
| 216 | > | this->setCoefficient(i->first, i->second); | 
| 217 | > | } | 
| 218 |  | } | 
| 219 | + | // by convention, always return *this | 
| 220 | + | return *this; | 
| 221 | + | } | 
| 222 |  |  | 
| 223 | < | iterator find(ExponentType exponent) { | 
| 224 | < | return polyPairMap_.find(exponent); | 
| 223 | > | PolynomialType& operator += (const PolynomialType& p) { | 
| 224 | > | typename Polynomial<Real>::const_iterator i; | 
| 225 | > |  | 
| 226 | > | for (i =  p.begin(); i  != p.end(); ++i) { | 
| 227 | > | this->addCoefficient(i->first, i->second); | 
| 228 | > | } | 
| 229 | > |  | 
| 230 | > | return *this; | 
| 231 | > | } | 
| 232 | > |  | 
| 233 | > | PolynomialType& operator -= (const PolynomialType& p) { | 
| 234 | > | typename Polynomial<Real>::const_iterator i; | 
| 235 | > | for (i =  p.begin(); i  != p.end(); ++i) { | 
| 236 | > | this->addCoefficient(i->first, -i->second); | 
| 237 | > | } | 
| 238 | > | return *this; | 
| 239 | > | } | 
| 240 | > |  | 
| 241 | > | PolynomialType& operator *= (const PolynomialType& p) { | 
| 242 | > | typename Polynomial<Real>::const_iterator i; | 
| 243 | > | typename Polynomial<Real>::const_iterator j; | 
| 244 | > | Polynomial<Real> p2(*this); | 
| 245 | > |  | 
| 246 | > | polyPairMap_.clear();  // clear out old map | 
| 247 | > | for (i = p2.begin(); i !=p2.end(); ++i) { | 
| 248 | > | for (j = p.begin(); j !=p.end(); ++j) { | 
| 249 | > | this->addCoefficient( i->first + j->first, i->second * j->second); | 
| 250 |  | } | 
| 251 | + | } | 
| 252 | + | return *this; | 
| 253 | + | } | 
| 254 |  |  | 
| 255 | < | size_t size() { | 
| 256 | < | return polyPairMap_.size(); | 
| 255 | > | //PolynomialType& operator *= (const Real v) | 
| 256 | > | PolynomialType& operator *= (const Real v) { | 
| 257 | > | typename Polynomial<Real>::const_iterator i; | 
| 258 | > | //Polynomial<Real> result; | 
| 259 | > |  | 
| 260 | > | for (i = this->begin(); i != this->end(); ++i) { | 
| 261 | > | this->setCoefficient( i->first, i->second*v); | 
| 262 | > | } | 
| 263 | > |  | 
| 264 | > | return *this; | 
| 265 | > | } | 
| 266 | > |  | 
| 267 | > | PolynomialType& operator += (const Real v) { | 
| 268 | > | this->addCoefficient( 0, v); | 
| 269 | > | return *this; | 
| 270 | > | } | 
| 271 | > |  | 
| 272 | > | /** | 
| 273 | > | * Returns the first derivative of this polynomial. | 
| 274 | > | * @return the first derivative of this polynomial | 
| 275 | > | */ | 
| 276 | > | PolynomialType & getDerivative() { | 
| 277 | > | Polynomial<Real> p; | 
| 278 | > |  | 
| 279 | > | typename Polynomial<Real>::const_iterator i; | 
| 280 | > | ExponentType exponent; | 
| 281 | > | CoefficientType coefficient; | 
| 282 | > |  | 
| 283 | > | for (i =  this->begin(); i  != this->end(); ++i) { | 
| 284 | > | exponent = i->first; | 
| 285 | > | coefficient = i->second; | 
| 286 | > | p.setCoefficient(exponent-1, coefficient * exponent); | 
| 287 | > | } | 
| 288 | > |  | 
| 289 | > | return p; | 
| 290 | > | } | 
| 291 | > |  | 
| 292 | > | // Creates the Companion matrix for a given polynomial | 
| 293 | > | DynamicRectMatrix<Real> CreateCompanion() { | 
| 294 | > | int rank = degree(); | 
| 295 | > | DynamicRectMatrix<Real> mat(rank, rank); | 
| 296 | > | Real majorCoeff = getCoefficient(rank); | 
| 297 | > | for(int i = 0; i < rank; ++i) { | 
| 298 | > | for(int j = 0; j < rank; ++j) { | 
| 299 | > | if(i - j == 1) { | 
| 300 | > | mat(i, j) = 1; | 
| 301 | > | } else if(j == rank-1) { | 
| 302 | > | mat(i, j) = -1 * getCoefficient(i) / majorCoeff; | 
| 303 | > | } | 
| 304 |  | } | 
| 305 | < |  | 
| 306 | < | private: | 
| 307 | < |  | 
| 308 | < | PolynomialPairMap polyPairMap_; | 
| 309 | < | }; | 
| 305 | > | } | 
| 306 | > | return mat; | 
| 307 | > | } | 
| 308 | > |  | 
| 309 | > | // Find the Roots of a given polynomial | 
| 310 | > | std::vector<complex<Real> > FindRoots() { | 
| 311 | > | int rank = degree(); | 
| 312 | > | DynamicRectMatrix<Real> companion = CreateCompanion(); | 
| 313 | > | JAMA::Eigenvalue<Real> eig(companion); | 
| 314 | > | DynamicVector<Real> reals, imags; | 
| 315 | > | eig.getRealEigenvalues(reals); | 
| 316 | > | eig.getImagEigenvalues(imags); | 
| 317 | > |  | 
| 318 | > | std::vector<complex<Real> > roots; | 
| 319 | > | for (int i = 0; i < rank; i++) { | 
| 320 | > | roots.push_back(complex<Real>(reals(i), imags(i))); | 
| 321 | > | } | 
| 322 |  |  | 
| 323 | + | return roots; | 
| 324 | + | } | 
| 325 |  |  | 
| 326 | < | /** | 
| 327 | < | * Generates and returns the product of two given Polynomials. | 
| 328 | < | * @return A Polynomial containing the product of the two given Polynomial parameters | 
| 329 | < | */ | 
| 330 | < | template<typename ElemType> | 
| 331 | < | Polynomial<ElemType> operator *(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 332 | < | typename Polynomial<ElemType>::const_iterator i; | 
| 333 | < | typename Polynomial<ElemType>::const_iterator j; | 
| 334 | < | Polynomial<ElemType> p; | 
| 326 | > | std::vector<Real> FindRealRoots() { | 
| 327 | > |  | 
| 328 | > | const Real fEpsilon = 1.0e-8; | 
| 329 | > | std::vector<Real> roots; | 
| 330 | > | roots.clear(); | 
| 331 | > |  | 
| 332 | > | const int deg = degree(); | 
| 333 | > |  | 
| 334 | > | switch (deg) { | 
| 335 | > | case 1: { | 
| 336 | > | Real fC1 = getCoefficient(1); | 
| 337 | > | Real fC0 = getCoefficient(0); | 
| 338 | > | roots.push_back( -fC0 / fC1); | 
| 339 | > | return roots; | 
| 340 | > | break; | 
| 341 | > | } | 
| 342 | > | case 2: { | 
| 343 | > | Real fC2 = getCoefficient(2); | 
| 344 | > | Real fC1 = getCoefficient(1); | 
| 345 | > | Real fC0 = getCoefficient(0); | 
| 346 | > | Real fDiscr = fC1*fC1 - 4.0*fC0*fC2; | 
| 347 | > | if (abs(fDiscr) <= fEpsilon) { | 
| 348 | > | fDiscr = (Real)0.0; | 
| 349 | > | } | 
| 350 | > |  | 
| 351 | > | if (fDiscr < (Real)0.0) {  // complex roots only | 
| 352 | > | return roots; | 
| 353 | > | } | 
| 354 | > |  | 
| 355 | > | Real fTmp = ((Real)0.5)/fC2; | 
| 356 | > |  | 
| 357 | > | if (fDiscr > (Real)0.0) { // 2 real roots | 
| 358 | > | fDiscr = sqrt(fDiscr); | 
| 359 | > | roots.push_back(fTmp*(-fC1 - fDiscr)); | 
| 360 | > | roots.push_back(fTmp*(-fC1 + fDiscr)); | 
| 361 | > | } else { | 
| 362 | > | roots.push_back(-fTmp * fC1);  // 1 real root | 
| 363 | > | } | 
| 364 | > | } | 
| 365 | > | return roots; | 
| 366 | > | break; | 
| 367 | > |  | 
| 368 | > | case 3: { | 
| 369 | > | Real fC3 = getCoefficient(3); | 
| 370 | > | Real fC2 = getCoefficient(2); | 
| 371 | > | Real fC1 = getCoefficient(1); | 
| 372 | > | Real fC0 = getCoefficient(0); | 
| 373 | > |  | 
| 374 | > | // make polynomial monic, x^3+c2*x^2+c1*x+c0 | 
| 375 | > | Real fInvC3 = ((Real)1.0)/fC3; | 
| 376 | > | fC0 *= fInvC3; | 
| 377 | > | fC1 *= fInvC3; | 
| 378 | > | fC2 *= fInvC3; | 
| 379 | > |  | 
| 380 | > | // convert to y^3+a*y+b = 0 by x = y-c2/3 | 
| 381 | > | const Real fThird = (Real)1.0/(Real)3.0; | 
| 382 | > | const Real fTwentySeventh = (Real)1.0/(Real)27.0; | 
| 383 | > | Real fOffset = fThird*fC2; | 
| 384 | > | Real fA = fC1 - fC2*fOffset; | 
| 385 | > | Real fB = fC0+fC2*(((Real)2.0)*fC2*fC2-((Real)9.0)*fC1)*fTwentySeventh; | 
| 386 | > | Real fHalfB = ((Real)0.5)*fB; | 
| 387 | > |  | 
| 388 | > | Real fDiscr = fHalfB*fHalfB + fA*fA*fA*fTwentySeventh; | 
| 389 | > | if (fabs(fDiscr) <= fEpsilon) { | 
| 390 | > | fDiscr = (Real)0.0; | 
| 391 | > | } | 
| 392 | > |  | 
| 393 | > | if (fDiscr > (Real)0.0) {  // 1 real, 2 complex roots | 
| 394 | > |  | 
| 395 | > | fDiscr = sqrt(fDiscr); | 
| 396 | > | Real fTemp = -fHalfB + fDiscr; | 
| 397 | > | Real root; | 
| 398 | > | if (fTemp >= (Real)0.0) { | 
| 399 | > | root = pow(fTemp,fThird); | 
| 400 | > | } else { | 
| 401 | > | root = -pow(-fTemp,fThird); | 
| 402 | > | } | 
| 403 | > | fTemp = -fHalfB - fDiscr; | 
| 404 | > | if ( fTemp >= (Real)0.0 ) { | 
| 405 | > | root += pow(fTemp,fThird); | 
| 406 | > | } else { | 
| 407 | > | root -= pow(-fTemp,fThird); | 
| 408 | > | } | 
| 409 | > | root -= fOffset; | 
| 410 | > |  | 
| 411 | > | roots.push_back(root); | 
| 412 | > | } else if (fDiscr < (Real)0.0) { | 
| 413 | > | const Real fSqrt3 = sqrt((Real)3.0); | 
| 414 | > | Real fDist = sqrt(-fThird*fA); | 
| 415 | > | Real fAngle = fThird*atan2(sqrt(-fDiscr), -fHalfB); | 
| 416 | > | Real fCos = cos(fAngle); | 
| 417 | > | Real fSin = sin(fAngle); | 
| 418 | > | roots.push_back(((Real)2.0)*fDist*fCos-fOffset); | 
| 419 | > | roots.push_back(-fDist*(fCos+fSqrt3*fSin)-fOffset); | 
| 420 | > | roots.push_back(-fDist*(fCos-fSqrt3*fSin)-fOffset); | 
| 421 | > | } else { | 
| 422 | > | Real fTemp; | 
| 423 | > | if (fHalfB >= (Real)0.0) { | 
| 424 | > | fTemp = -pow(fHalfB,fThird); | 
| 425 | > | } else { | 
| 426 | > | fTemp = pow(-fHalfB,fThird); | 
| 427 | > | } | 
| 428 | > | roots.push_back(((Real)2.0)*fTemp-fOffset); | 
| 429 | > | roots.push_back(-fTemp-fOffset); | 
| 430 | > | roots.push_back(-fTemp-fOffset); | 
| 431 | > | } | 
| 432 | > | } | 
| 433 | > | return roots; | 
| 434 | > | break; | 
| 435 | > | case 4: { | 
| 436 | > | Real fC4 = getCoefficient(4); | 
| 437 | > | Real fC3 = getCoefficient(3); | 
| 438 | > | Real fC2 = getCoefficient(2); | 
| 439 | > | Real fC1 = getCoefficient(1); | 
| 440 | > | Real fC0 = getCoefficient(0); | 
| 441 | > |  | 
| 442 | > | // make polynomial monic, x^4+c3*x^3+c2*x^2+c1*x+c0 | 
| 443 | > | Real fInvC4 = ((Real)1.0)/fC4; | 
| 444 | > | fC0 *= fInvC4; | 
| 445 | > | fC1 *= fInvC4; | 
| 446 | > | fC2 *= fInvC4; | 
| 447 | > | fC3 *= fInvC4; | 
| 448 | > |  | 
| 449 | > | // reduction to resolvent cubic polynomial y^3+r2*y^2+r1*y+r0 = 0 | 
| 450 | > | Real fR0 = -fC3*fC3*fC0 + ((Real)4.0)*fC2*fC0 - fC1*fC1; | 
| 451 | > | Real fR1 = fC3*fC1 - ((Real)4.0)*fC0; | 
| 452 | > | Real fR2 = -fC2; | 
| 453 | > | Polynomial<Real> tempCubic; | 
| 454 | > | tempCubic.setCoefficient(0, fR0); | 
| 455 | > | tempCubic.setCoefficient(1, fR1); | 
| 456 | > | tempCubic.setCoefficient(2, fR2); | 
| 457 | > | tempCubic.setCoefficient(3, 1.0); | 
| 458 | > | std::vector<Real> cubeRoots = tempCubic.FindRealRoots(); // always | 
| 459 | > | // produces | 
| 460 | > | // at | 
| 461 | > | // least | 
| 462 | > | // one | 
| 463 | > | // root | 
| 464 | > | Real fY = cubeRoots[0]; | 
| 465 | > |  | 
| 466 | > | Real fDiscr = ((Real)0.25)*fC3*fC3 - fC2 + fY; | 
| 467 | > | if (fabs(fDiscr) <= fEpsilon) { | 
| 468 | > | fDiscr = (Real)0.0; | 
| 469 | > | } | 
| 470 | > |  | 
| 471 | > | if (fDiscr > (Real)0.0) { | 
| 472 | > | Real fR = sqrt(fDiscr); | 
| 473 | > | Real fT1 = ((Real)0.75)*fC3*fC3 - fR*fR - ((Real)2.0)*fC2; | 
| 474 | > | Real fT2 = (((Real)4.0)*fC3*fC2 - ((Real)8.0)*fC1 - fC3*fC3*fC3) / | 
| 475 | > | (((Real)4.0)*fR); | 
| 476 | > |  | 
| 477 | > | Real fTplus = fT1+fT2; | 
| 478 | > | Real fTminus = fT1-fT2; | 
| 479 | > | if (fabs(fTplus) <= fEpsilon) { | 
| 480 | > | fTplus = (Real)0.0; | 
| 481 | > | } | 
| 482 | > | if (fabs(fTminus) <= fEpsilon) { | 
| 483 | > | fTminus = (Real)0.0; | 
| 484 | > | } | 
| 485 | > |  | 
| 486 | > | if (fTplus >= (Real)0.0) { | 
| 487 | > | Real fD = sqrt(fTplus); | 
| 488 | > | roots.push_back(-((Real)0.25)*fC3+((Real)0.5)*(fR+fD)); | 
| 489 | > | roots.push_back(-((Real)0.25)*fC3+((Real)0.5)*(fR-fD)); | 
| 490 | > | } | 
| 491 | > | if (fTminus >= (Real)0.0) { | 
| 492 | > | Real fE = sqrt(fTminus); | 
| 493 | > | roots.push_back(-((Real)0.25)*fC3+((Real)0.5)*(fE-fR)); | 
| 494 | > | roots.push_back(-((Real)0.25)*fC3-((Real)0.5)*(fE+fR)); | 
| 495 | > | } | 
| 496 | > | } else if (fDiscr < (Real)0.0) { | 
| 497 | > | //roots.clear(); | 
| 498 | > | } else { | 
| 499 | > | Real fT2 = fY*fY-((Real)4.0)*fC0; | 
| 500 | > | if (fT2 >= -fEpsilon) { | 
| 501 | > | if (fT2 < (Real)0.0) { // round to zero | 
| 502 | > | fT2 = (Real)0.0; | 
| 503 | > | } | 
| 504 | > | fT2 = ((Real)2.0)*sqrt(fT2); | 
| 505 | > | Real fT1 = ((Real)0.75)*fC3*fC3 - ((Real)2.0)*fC2; | 
| 506 | > | if (fT1+fT2 >= fEpsilon) { | 
| 507 | > | Real fD = sqrt(fT1+fT2); | 
| 508 | > | roots.push_back( -((Real)0.25)*fC3+((Real)0.5)*fD); | 
| 509 | > | roots.push_back( -((Real)0.25)*fC3-((Real)0.5)*fD); | 
| 510 | > | } | 
| 511 | > | if (fT1-fT2 >= fEpsilon) { | 
| 512 | > | Real fE = sqrt(fT1-fT2); | 
| 513 | > | roots.push_back( -((Real)0.25)*fC3+((Real)0.5)*fE); | 
| 514 | > | roots.push_back( -((Real)0.25)*fC3-((Real)0.5)*fE); | 
| 515 | > | } | 
| 516 | > | } | 
| 517 | > | } | 
| 518 | > | } | 
| 519 | > | return roots; | 
| 520 | > | break; | 
| 521 | > | default: { | 
| 522 | > | DynamicRectMatrix<Real> companion = CreateCompanion(); | 
| 523 | > | JAMA::Eigenvalue<Real> eig(companion); | 
| 524 | > | DynamicVector<Real> reals, imags; | 
| 525 | > | eig.getRealEigenvalues(reals); | 
| 526 | > | eig.getImagEigenvalues(imags); | 
| 527 | > |  | 
| 528 | > | for (int i = 0; i < deg; i++) { | 
| 529 | > | if (fabs(imags(i)) < fEpsilon) | 
| 530 | > | roots.push_back(reals(i)); | 
| 531 | > | } | 
| 532 | > | } | 
| 533 | > | return roots; | 
| 534 | > | break; | 
| 535 | > | } | 
| 536 | > |  | 
| 537 | > | return roots; // should be empty if you got here | 
| 538 | > | } | 
| 539 | > |  | 
| 540 | > | private: | 
| 541 | > |  | 
| 542 | > | PolynomialPairMap polyPairMap_; | 
| 543 | > | }; | 
| 544 | > |  | 
| 545 | > |  | 
| 546 | > | /** | 
| 547 | > | * Generates and returns the product of two given Polynomials. | 
| 548 | > | * @return A Polynomial containing the product of the two given Polynomial parameters | 
| 549 | > | */ | 
| 550 | > | template<typename Real> | 
| 551 | > | Polynomial<Real> operator *(const Polynomial<Real>& p1, const Polynomial<Real>& p2) { | 
| 552 | > | typename Polynomial<Real>::const_iterator i; | 
| 553 | > | typename Polynomial<Real>::const_iterator j; | 
| 554 | > | Polynomial<Real> p; | 
| 555 |  |  | 
| 556 |  | for (i = p1.begin(); i !=p1.end(); ++i) { | 
| 557 | < | for (j = p2.begin(); j !=p2.end(); ++j) { | 
| 558 | < | p.addCoefficient( i->first + j->first, i->second * j->second); | 
| 559 | < | } | 
| 557 | > | for (j = p2.begin(); j !=p2.end(); ++j) { | 
| 558 | > | p.addCoefficient( i->first + j->first, i->second * j->second); | 
| 559 | > | } | 
| 560 |  | } | 
| 561 |  |  | 
| 562 |  | return p; | 
| 563 | < | } | 
| 563 | > | } | 
| 564 |  |  | 
| 565 | < | /** | 
| 566 | < | * Generates and returns the sum of two given Polynomials. | 
| 567 | < | * @param p1 the first polynomial | 
| 568 | < | * @param p2 the second polynomial | 
| 569 | < | */ | 
| 570 | < | template<typename ElemType> | 
| 571 | < | Polynomial<ElemType> operator +(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 572 | < | Polynomial<ElemType> p(p1); | 
| 565 | > | template<typename Real> | 
| 566 | > | Polynomial<Real> operator *(const Polynomial<Real>& p, const Real v) { | 
| 567 | > | typename Polynomial<Real>::const_iterator i; | 
| 568 | > | Polynomial<Real> result; | 
| 569 | > |  | 
| 570 | > | for (i = p.begin(); i !=p.end(); ++i) { | 
| 571 | > | result.setCoefficient( i->first , i->second * v); | 
| 572 | > | } | 
| 573 |  |  | 
| 574 | < | typename Polynomial<ElemType>::const_iterator i; | 
| 574 | > | return result; | 
| 575 | > | } | 
| 576 |  |  | 
| 577 | + | template<typename Real> | 
| 578 | + | Polynomial<Real> operator *( const Real v, const Polynomial<Real>& p) { | 
| 579 | + | typename Polynomial<Real>::const_iterator i; | 
| 580 | + | Polynomial<Real> result; | 
| 581 | + |  | 
| 582 | + | for (i = p.begin(); i !=p.end(); ++i) { | 
| 583 | + | result.setCoefficient( i->first , i->second * v); | 
| 584 | + | } | 
| 585 | + |  | 
| 586 | + | return result; | 
| 587 | + | } | 
| 588 | + |  | 
| 589 | + | /** | 
| 590 | + | * Generates and returns the sum of two given Polynomials. | 
| 591 | + | * @param p1 the first polynomial | 
| 592 | + | * @param p2 the second polynomial | 
| 593 | + | */ | 
| 594 | + | template<typename Real> | 
| 595 | + | Polynomial<Real> operator +(const Polynomial<Real>& p1, const Polynomial<Real>& p2) { | 
| 596 | + | Polynomial<Real> p(p1); | 
| 597 | + |  | 
| 598 | + | typename Polynomial<Real>::const_iterator i; | 
| 599 | + |  | 
| 600 |  | for (i =  p2.begin(); i  != p2.end(); ++i) { | 
| 601 | < | p.addCoefficient(i->first, i->second); | 
| 601 | > | p.addCoefficient(i->first, i->second); | 
| 602 |  | } | 
| 603 |  |  | 
| 604 |  | return p; | 
| 605 |  |  | 
| 606 | < | } | 
| 606 | > | } | 
| 607 |  |  | 
| 608 | < | /** | 
| 609 | < | * Generates and returns the difference of two given Polynomials. | 
| 610 | < | * @return | 
| 611 | < | * @param p1 the first polynomial | 
| 612 | < | * @param p2 the second polynomial | 
| 613 | < | */ | 
| 614 | < | template<typename ElemType> | 
| 615 | < | Polynomial<ElemType> operator -(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 616 | < | Polynomial<ElemType> p(p1); | 
| 608 | > | /** | 
| 609 | > | * Generates and returns the difference of two given Polynomials. | 
| 610 | > | * @return | 
| 611 | > | * @param p1 the first polynomial | 
| 612 | > | * @param p2 the second polynomial | 
| 613 | > | */ | 
| 614 | > | template<typename Real> | 
| 615 | > | Polynomial<Real> operator -(const Polynomial<Real>& p1, const Polynomial<Real>& p2) { | 
| 616 | > | Polynomial<Real> p(p1); | 
| 617 |  |  | 
| 618 | < | typename Polynomial<ElemType>::const_iterator i; | 
| 618 | > | typename Polynomial<Real>::const_iterator i; | 
| 619 |  |  | 
| 620 |  | for (i =  p2.begin(); i  != p2.end(); ++i) { | 
| 621 | < | p.addCoefficient(i->first, -i->second); | 
| 621 | > | p.addCoefficient(i->first, -i->second); | 
| 622 |  | } | 
| 623 |  |  | 
| 624 |  | return p; | 
| 625 |  |  | 
| 626 | < | } | 
| 626 | > | } | 
| 627 |  |  | 
| 628 | < | /** | 
| 629 | < | * Tests if two polynomial have the same exponents | 
| 630 | < | * @return true if these all of the exponents in these Polynomial are identical | 
| 631 | < | * @param p1 the first polynomial | 
| 632 | < | * @param p2 the second polynomial | 
| 633 | < | * @note this function does not compare the coefficient | 
| 634 | < | */ | 
| 635 | < | template<typename ElemType> | 
| 636 | < | bool equal(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 628 | > | /** | 
| 629 | > | * Returns the first derivative of this polynomial. | 
| 630 | > | * @return the first derivative of this polynomial | 
| 631 | > | */ | 
| 632 | > | template<typename Real> | 
| 633 | > | Polynomial<Real> getDerivative(const Polynomial<Real>& p1) { | 
| 634 | > | Polynomial<Real> p; | 
| 635 | > |  | 
| 636 | > | typename Polynomial<Real>::const_iterator i; | 
| 637 | > | int exponent; | 
| 638 | > | Real coefficient; | 
| 639 | > |  | 
| 640 | > | for (i =  p1.begin(); i  != p1.end(); ++i) { | 
| 641 | > | exponent = i->first; | 
| 642 | > | coefficient = i->second; | 
| 643 | > | p.setCoefficient(exponent-1, coefficient * exponent); | 
| 644 | > | } | 
| 645 | > |  | 
| 646 | > | return p; | 
| 647 | > | } | 
| 648 |  |  | 
| 649 | < | typename Polynomial<ElemType>::const_iterator i; | 
| 650 | < | typename Polynomial<ElemType>::const_iterator j; | 
| 649 | > | /** | 
| 650 | > | * Tests if two polynomial have the same exponents | 
| 651 | > | * @return true if all of the exponents in these Polynomial are identical | 
| 652 | > | * @param p1 the first polynomial | 
| 653 | > | * @param p2 the second polynomial | 
| 654 | > | * @note this function does not compare the coefficient | 
| 655 | > | */ | 
| 656 | > | template<typename Real> | 
| 657 | > | bool equal(const Polynomial<Real>& p1, const Polynomial<Real>& p2) { | 
| 658 |  |  | 
| 659 | + | typename Polynomial<Real>::const_iterator i; | 
| 660 | + | typename Polynomial<Real>::const_iterator j; | 
| 661 | + |  | 
| 662 |  | if (p1.size() != p2.size() ) { | 
| 663 | < | return false; | 
| 663 | > | return false; | 
| 664 |  | } | 
| 665 |  |  | 
| 666 |  | for (i =  p1.begin(), j = p2.begin(); i  != p1.end() && j != p2.end(); ++i, ++j) { | 
| 667 | < | if (i->first != j->first) { | 
| 668 | < | return false; | 
| 669 | < | } | 
| 667 | > | if (i->first != j->first) { | 
| 668 | > | return false; | 
| 669 | > | } | 
| 670 |  | } | 
| 671 |  |  | 
| 672 |  | return true; | 
| 673 | < | } | 
| 673 | > | } | 
| 674 |  |  | 
| 279 | – | typedef Polynomial<double> DoublePolynomial; | 
| 675 |  |  | 
| 676 | < | } //end namespace oopse | 
| 676 | > |  | 
| 677 | > | typedef Polynomial<RealType> DoublePolynomial; | 
| 678 | > |  | 
| 679 | > | } //end namespace OpenMD | 
| 680 |  | #endif //MATH_POLYNOMIAL_HPP |