| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | *    publication of scientific results based in part on use of the | 
| 11 | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | *    the article in which the program was described (Matthew | 
| 13 | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | * | 
| 18 | * 2. Redistributions of source code must retain the above copyright | 
| 19 | *    notice, this list of conditions and the following disclaimer. | 
| 20 | * | 
| 21 | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | *    documentation and/or other materials provided with the | 
| 24 | *    distribution. | 
| 25 | * | 
| 26 | * This software is provided "AS IS," without a warranty of any | 
| 27 | * kind. All express or implied conditions, representations and | 
| 28 | * warranties, including any implied warranty of merchantability, | 
| 29 | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | * be liable for any damages suffered by licensee as a result of | 
| 32 | * using, modifying or distributing the software or its | 
| 33 | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | * damages, however caused and regardless of the theory of liability, | 
| 37 | * arising out of the use of or inability to use software, even if the | 
| 38 | * University of Notre Dame has been advised of the possibility of | 
| 39 | * such damages. | 
| 40 | */ | 
| 41 |  | 
| 42 | /** | 
| 43 | * @file Polynomial.hpp | 
| 44 | * @author    teng lin | 
| 45 | * @date  11/16/2004 | 
| 46 | * @version 1.0 | 
| 47 | */ | 
| 48 |  | 
| 49 | #ifndef MATH_POLYNOMIAL_HPP | 
| 50 | #define MATH_POLYNOMIAL_HPP | 
| 51 |  | 
| 52 | #include <iostream> | 
| 53 | #include <list> | 
| 54 | #include <map> | 
| 55 | #include <utility> | 
| 56 |  | 
| 57 | namespace oopse { | 
| 58 |  | 
| 59 | template<typename ElemType> ElemType pow(ElemType x, int N) { | 
| 60 | ElemType result(1); | 
| 61 |  | 
| 62 | for (int i = 0; i < N; ++i) { | 
| 63 | result *= x; | 
| 64 | } | 
| 65 |  | 
| 66 | return result; | 
| 67 | } | 
| 68 |  | 
| 69 | /** | 
| 70 | * @class Polynomial Polynomial.hpp "math/Polynomial.hpp" | 
| 71 | * A generic Polynomial class | 
| 72 | */ | 
| 73 | template<typename ElemType> | 
| 74 | class Polynomial { | 
| 75 |  | 
| 76 | public: | 
| 77 | typedef Polynomial<ElemType> PolynomialType; | 
| 78 | typedef int ExponentType; | 
| 79 | typedef ElemType CoefficientType; | 
| 80 | typedef std::map<ExponentType, CoefficientType> PolynomialPairMap; | 
| 81 | typedef typename PolynomialPairMap::iterator iterator; | 
| 82 | typedef typename PolynomialPairMap::const_iterator const_iterator; | 
| 83 |  | 
| 84 | Polynomial() {} | 
| 85 | Polynomial(ElemType v) {setCoefficient(0, v);} | 
| 86 | /** | 
| 87 | * Calculates the value of this Polynomial evaluated at the given x value. | 
| 88 | * @return The value of this Polynomial evaluates at the given x value | 
| 89 | * @param x the value of the independent variable for this Polynomial function | 
| 90 | */ | 
| 91 | ElemType evaluate(const ElemType& x) { | 
| 92 | ElemType result = ElemType(); | 
| 93 | ExponentType exponent; | 
| 94 | CoefficientType coefficient; | 
| 95 |  | 
| 96 | for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { | 
| 97 | exponent = i->first; | 
| 98 | coefficient = i->second; | 
| 99 | result  += pow(x, exponent) * coefficient; | 
| 100 | } | 
| 101 |  | 
| 102 | return result; | 
| 103 | } | 
| 104 |  | 
| 105 | /** | 
| 106 | * Returns the first derivative of this polynomial. | 
| 107 | * @return the first derivative of this polynomial | 
| 108 | * @param x | 
| 109 | */ | 
| 110 | ElemType evaluateDerivative(const ElemType& x) { | 
| 111 | ElemType result = ElemType(); | 
| 112 | ExponentType exponent; | 
| 113 | CoefficientType coefficient; | 
| 114 |  | 
| 115 | for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { | 
| 116 | exponent = i->first; | 
| 117 | coefficient = i->second; | 
| 118 | result  += pow(x, exponent - 1) * coefficient * exponent; | 
| 119 | } | 
| 120 |  | 
| 121 | return result; | 
| 122 | } | 
| 123 |  | 
| 124 | /** | 
| 125 | * Set the coefficent of the specified exponent, if the coefficient is already there, it | 
| 126 | * will be overwritten. | 
| 127 | * @param exponent exponent of a term in this Polynomial | 
| 128 | * @param coefficient multiplier of a term in this Polynomial | 
| 129 | */ | 
| 130 |  | 
| 131 | void setCoefficient(int exponent, const ElemType& coefficient) { | 
| 132 | polyPairMap_.insert(typename PolynomialPairMap::value_type(exponent, coefficient)); | 
| 133 | } | 
| 134 |  | 
| 135 | /** | 
| 136 | * Set the coefficent of the specified exponent. If the coefficient is already there,  just add the | 
| 137 | * new coefficient to the old one, otherwise,  just call setCoefficent | 
| 138 | * @param exponent exponent of a term in this Polynomial | 
| 139 | * @param coefficient multiplier of a term in this Polynomial | 
| 140 | */ | 
| 141 |  | 
| 142 | void addCoefficient(int exponent, const ElemType& coefficient) { | 
| 143 | iterator i = polyPairMap_.find(exponent); | 
| 144 |  | 
| 145 | if (i != end()) { | 
| 146 | i->second += coefficient; | 
| 147 | } else { | 
| 148 | setCoefficient(exponent, coefficient); | 
| 149 | } | 
| 150 | } | 
| 151 |  | 
| 152 |  | 
| 153 | /** | 
| 154 | * Returns the coefficient associated with the given power for this Polynomial. | 
| 155 | * @return the coefficient associated with the given power for this Polynomial | 
| 156 | * @exponent exponent of any term in this Polynomial | 
| 157 | */ | 
| 158 | ElemType getCoefficient(ExponentType exponent) { | 
| 159 | iterator i = polyPairMap_.find(exponent); | 
| 160 |  | 
| 161 | if (i != end()) { | 
| 162 | return i->second; | 
| 163 | } else { | 
| 164 | return ElemType(0); | 
| 165 | } | 
| 166 | } | 
| 167 |  | 
| 168 | iterator begin() { | 
| 169 | return polyPairMap_.begin(); | 
| 170 | } | 
| 171 |  | 
| 172 | const_iterator begin() const{ | 
| 173 | return polyPairMap_.begin(); | 
| 174 | } | 
| 175 |  | 
| 176 | iterator end() { | 
| 177 | return polyPairMap_.end(); | 
| 178 | } | 
| 179 |  | 
| 180 | const_iterator end() const{ | 
| 181 | return polyPairMap_.end(); | 
| 182 | } | 
| 183 |  | 
| 184 | iterator find(ExponentType exponent) { | 
| 185 | return polyPairMap_.find(exponent); | 
| 186 | } | 
| 187 |  | 
| 188 | size_t size() { | 
| 189 | return polyPairMap_.size(); | 
| 190 | } | 
| 191 |  | 
| 192 | PolynomialType& operator += (const PolynomialType& p) { | 
| 193 | typename Polynomial<ElemType>::const_iterator i; | 
| 194 |  | 
| 195 | for (i =  p.begin(); i  != p.end(); ++i) { | 
| 196 | this->addCoefficient(i->first, i->second); | 
| 197 | } | 
| 198 |  | 
| 199 | return *this; | 
| 200 | } | 
| 201 |  | 
| 202 | PolynomialType& operator -= (const PolynomialType& p) { | 
| 203 | typename Polynomial<ElemType>::const_iterator i; | 
| 204 | for (i =  p.begin(); i  != p.end(); ++i) { | 
| 205 | this->addCoefficient(i->first, -i->second); | 
| 206 | } | 
| 207 | } | 
| 208 |  | 
| 209 | PolynomialType& operator *= (const PolynomialType& p) { | 
| 210 | typename Polynomial<ElemType>::const_iterator i; | 
| 211 | typename Polynomial<ElemType>::const_iterator j; | 
| 212 |  | 
| 213 | for (i = this->begin(); i !=this->end(); ++i) { | 
| 214 | for (j = p.begin(); j !=p.end(); ++j) { | 
| 215 | this->addCoefficient( i->first + j->first, i->second * j->second); | 
| 216 | } | 
| 217 | } | 
| 218 |  | 
| 219 | return *this; | 
| 220 | } | 
| 221 |  | 
| 222 |  | 
| 223 | private: | 
| 224 |  | 
| 225 | PolynomialPairMap polyPairMap_; | 
| 226 | }; | 
| 227 |  | 
| 228 |  | 
| 229 | /** | 
| 230 | * Generates and returns the product of two given Polynomials. | 
| 231 | * @return A Polynomial containing the product of the two given Polynomial parameters | 
| 232 | */ | 
| 233 | template<typename ElemType> | 
| 234 | Polynomial<ElemType> operator *(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 235 | typename Polynomial<ElemType>::const_iterator i; | 
| 236 | typename Polynomial<ElemType>::const_iterator j; | 
| 237 | Polynomial<ElemType> p; | 
| 238 |  | 
| 239 | for (i = p1.begin(); i !=p1.end(); ++i) { | 
| 240 | for (j = p2.begin(); j !=p2.end(); ++j) { | 
| 241 | p.addCoefficient( i->first + j->first, i->second * j->second); | 
| 242 | } | 
| 243 | } | 
| 244 |  | 
| 245 | return p; | 
| 246 | } | 
| 247 |  | 
| 248 | /** | 
| 249 | * Generates and returns the sum of two given Polynomials. | 
| 250 | * @param p1 the first polynomial | 
| 251 | * @param p2 the second polynomial | 
| 252 | */ | 
| 253 | template<typename ElemType> | 
| 254 | Polynomial<ElemType> operator +(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 255 | Polynomial<ElemType> p(p1); | 
| 256 |  | 
| 257 | typename Polynomial<ElemType>::const_iterator i; | 
| 258 |  | 
| 259 | for (i =  p2.begin(); i  != p2.end(); ++i) { | 
| 260 | p.addCoefficient(i->first, i->second); | 
| 261 | } | 
| 262 |  | 
| 263 | return p; | 
| 264 |  | 
| 265 | } | 
| 266 |  | 
| 267 | /** | 
| 268 | * Generates and returns the difference of two given Polynomials. | 
| 269 | * @return | 
| 270 | * @param p1 the first polynomial | 
| 271 | * @param p2 the second polynomial | 
| 272 | */ | 
| 273 | template<typename ElemType> | 
| 274 | Polynomial<ElemType> operator -(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 275 | Polynomial<ElemType> p(p1); | 
| 276 |  | 
| 277 | typename Polynomial<ElemType>::const_iterator i; | 
| 278 |  | 
| 279 | for (i =  p2.begin(); i  != p2.end(); ++i) { | 
| 280 | p.addCoefficient(i->first, -i->second); | 
| 281 | } | 
| 282 |  | 
| 283 | return p; | 
| 284 |  | 
| 285 | } | 
| 286 |  | 
| 287 | /** | 
| 288 | * Tests if two polynomial have the same exponents | 
| 289 | * @return true if these all of the exponents in these Polynomial are identical | 
| 290 | * @param p1 the first polynomial | 
| 291 | * @param p2 the second polynomial | 
| 292 | * @note this function does not compare the coefficient | 
| 293 | */ | 
| 294 | template<typename ElemType> | 
| 295 | bool equal(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 296 |  | 
| 297 | typename Polynomial<ElemType>::const_iterator i; | 
| 298 | typename Polynomial<ElemType>::const_iterator j; | 
| 299 |  | 
| 300 | if (p1.size() != p2.size() ) { | 
| 301 | return false; | 
| 302 | } | 
| 303 |  | 
| 304 | for (i =  p1.begin(), j = p2.begin(); i  != p1.end() && j != p2.end(); ++i, ++j) { | 
| 305 | if (i->first != j->first) { | 
| 306 | return false; | 
| 307 | } | 
| 308 | } | 
| 309 |  | 
| 310 | return true; | 
| 311 | } | 
| 312 |  | 
| 313 | typedef Polynomial<double> DoublePolynomial; | 
| 314 |  | 
| 315 | } //end namespace oopse | 
| 316 | #endif //MATH_POLYNOMIAL_HPP |