| 33 |
|
#ifndef MATH_QUATERNION_HPP |
| 34 |
|
#define MATH_QUATERNION_HPP |
| 35 |
|
|
| 36 |
+ |
#include "math/Vector.hpp" |
| 37 |
+ |
|
| 38 |
|
namespace oopse{ |
| 39 |
|
|
| 40 |
|
/** |
| 41 |
|
* @class Quaternion Quaternion.hpp "math/Quaternion.hpp" |
| 42 |
< |
* @brief |
| 42 |
> |
* Quaternion is a sort of a higher-level complex number. |
| 43 |
> |
* It is defined as Q = w + x*i + y*j + z*k, |
| 44 |
> |
* where w, x, y, and z are numbers of type T (e.g. double), and |
| 45 |
> |
* i*i = -1; j*j = -1; k*k = -1; |
| 46 |
> |
* i*j = k; j*k = i; k*i = j; |
| 47 |
|
*/ |
| 48 |
|
template<typename Real> |
| 49 |
|
class Quaternion : public Vector<Real, 4> { |
| 50 |
+ |
public: |
| 51 |
+ |
Quaternion(); |
| 52 |
|
|
| 53 |
< |
}; |
| 53 |
> |
/** Constructs and initializes a Quaternion from w, x, y, z values */ |
| 54 |
> |
Quaternion(Real w, Real x, Real y, Real z) { |
| 55 |
> |
data_[0] = w; |
| 56 |
> |
data_[1] = x; |
| 57 |
> |
data_[2] = y; |
| 58 |
> |
data_[3] = z; |
| 59 |
> |
} |
| 60 |
> |
|
| 61 |
> |
/** |
| 62 |
> |
* |
| 63 |
> |
*/ |
| 64 |
> |
Quaternion(const Vector<Real,4>& v) |
| 65 |
> |
: Vector<Real, 4>(v){ |
| 66 |
> |
} |
| 67 |
|
|
| 68 |
+ |
/** */ |
| 69 |
+ |
Quaternion& operator =(const Vector<Real, 4>& v){ |
| 70 |
+ |
if (this == & v) |
| 71 |
+ |
return *this; |
| 72 |
+ |
|
| 73 |
+ |
Vector<Real, 4>::operator=(v); |
| 74 |
+ |
|
| 75 |
+ |
return *this; |
| 76 |
+ |
} |
| 77 |
+ |
|
| 78 |
+ |
/** |
| 79 |
+ |
* Returns the value of the first element of this quaternion. |
| 80 |
+ |
* @return the value of the first element of this quaternion |
| 81 |
+ |
*/ |
| 82 |
+ |
Real w() const { |
| 83 |
+ |
return data_[0]; |
| 84 |
+ |
} |
| 85 |
+ |
|
| 86 |
+ |
/** |
| 87 |
+ |
* Returns the reference of the first element of this quaternion. |
| 88 |
+ |
* @return the reference of the first element of this quaternion |
| 89 |
+ |
*/ |
| 90 |
+ |
Real& w() { |
| 91 |
+ |
return data_[0]; |
| 92 |
+ |
} |
| 93 |
+ |
|
| 94 |
+ |
/** |
| 95 |
+ |
* Returns the value of the first element of this quaternion. |
| 96 |
+ |
* @return the value of the first element of this quaternion |
| 97 |
+ |
*/ |
| 98 |
+ |
Real x() const { |
| 99 |
+ |
return data_[1]; |
| 100 |
+ |
} |
| 101 |
+ |
|
| 102 |
+ |
/** |
| 103 |
+ |
* Returns the reference of the second element of this quaternion. |
| 104 |
+ |
* @return the reference of the second element of this quaternion |
| 105 |
+ |
*/ |
| 106 |
+ |
Real& x() { |
| 107 |
+ |
return data_[1]; |
| 108 |
+ |
} |
| 109 |
+ |
|
| 110 |
+ |
/** |
| 111 |
+ |
* Returns the value of the thirf element of this quaternion. |
| 112 |
+ |
* @return the value of the third element of this quaternion |
| 113 |
+ |
*/ |
| 114 |
+ |
Real y() const { |
| 115 |
+ |
return data_[2]; |
| 116 |
+ |
} |
| 117 |
+ |
|
| 118 |
+ |
/** |
| 119 |
+ |
* Returns the reference of the third element of this quaternion. |
| 120 |
+ |
* @return the reference of the third element of this quaternion |
| 121 |
+ |
*/ |
| 122 |
+ |
Real& y() { |
| 123 |
+ |
return data_[2]; |
| 124 |
+ |
} |
| 125 |
+ |
|
| 126 |
+ |
/** |
| 127 |
+ |
* Returns the value of the fourth element of this quaternion. |
| 128 |
+ |
* @return the value of the fourth element of this quaternion |
| 129 |
+ |
*/ |
| 130 |
+ |
Real z() const { |
| 131 |
+ |
return data_[3]; |
| 132 |
+ |
} |
| 133 |
+ |
/** |
| 134 |
+ |
* Returns the reference of the fourth element of this quaternion. |
| 135 |
+ |
* @return the reference of the fourth element of this quaternion |
| 136 |
+ |
*/ |
| 137 |
+ |
Real& z() { |
| 138 |
+ |
return data_[3]; |
| 139 |
+ |
} |
| 140 |
+ |
|
| 141 |
+ |
/** |
| 142 |
+ |
* Returns the inverse of this quaternion |
| 143 |
+ |
* @return inverse |
| 144 |
+ |
* @note since quaternion is a complex number, the inverse of quaternion |
| 145 |
+ |
* q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2) |
| 146 |
+ |
*/ |
| 147 |
+ |
Quaternion<Real> inverse(){ |
| 148 |
+ |
Quaternion<Real> q; |
| 149 |
+ |
Real d = this->lengthSquared(); |
| 150 |
+ |
|
| 151 |
+ |
q.w() = w() / d; |
| 152 |
+ |
q.x() = -x() / d; |
| 153 |
+ |
q.y() = -y() / d; |
| 154 |
+ |
q.z() = -z() / d; |
| 155 |
+ |
|
| 156 |
+ |
return q; |
| 157 |
+ |
} |
| 158 |
+ |
|
| 159 |
+ |
/** |
| 160 |
+ |
* Sets the value to the multiplication of itself and another quaternion |
| 161 |
+ |
* @param q the other quaternion |
| 162 |
+ |
*/ |
| 163 |
+ |
void mul(const Quaternion<Real>& q) { |
| 164 |
+ |
|
| 165 |
+ |
Real a0( (z() - y()) * (q.y() - q.z()) ); |
| 166 |
+ |
Real a1( (w() + x()) * (q.w() + q.x()) ); |
| 167 |
+ |
Real a2( (w() - x()) * (q.y() + q.z()) ); |
| 168 |
+ |
Real a3( (y() + z()) * (q.w() - q.x()) ); |
| 169 |
+ |
Real b0( -(x() - z()) * (q.x() - q.y()) ); |
| 170 |
+ |
Real b1( -(x() + z()) * (q.x() + q.y()) ); |
| 171 |
+ |
Real b2( (w() + y()) * (q.w() - q.z()) ); |
| 172 |
+ |
Real b3( (w() - y()) * (q.w() + q.z()) ); |
| 173 |
+ |
|
| 174 |
+ |
data_[0] = a0 + 0.5*(b0 + b1 + b2 + b3),; |
| 175 |
+ |
data_[1] = a1 + 0.5*(b0 + b1 - b2 - b3); |
| 176 |
+ |
data_[2] = a2 + 0.5*(b0 - b1 + b2 - b3), |
| 177 |
+ |
data_[3] = a3 + 0.5*(b0 - b1 - b2 + b3) ); |
| 178 |
+ |
} |
| 179 |
+ |
|
| 180 |
+ |
|
| 181 |
+ |
/** Set the value of this quaternion to the division of itself by another quaternion */ |
| 182 |
+ |
void div(const Quaternion<Real>& q) { |
| 183 |
+ |
mul(q.inverse()); |
| 184 |
+ |
} |
| 185 |
+ |
|
| 186 |
+ |
Quaternion<Real>& operator *=(const Quaternion<Real>& q) { |
| 187 |
+ |
mul(q); |
| 188 |
+ |
return *this; |
| 189 |
+ |
} |
| 190 |
+ |
|
| 191 |
+ |
Quaternion<Real>& operator /=(const Quaternion<Real>& q) { |
| 192 |
+ |
mul(q.inverse()); |
| 193 |
+ |
return *this; |
| 194 |
+ |
} |
| 195 |
+ |
|
| 196 |
+ |
/** |
| 197 |
+ |
* Returns the conjugate quaternion of this quaternion |
| 198 |
+ |
* @return the conjugate quaternion of this quaternion |
| 199 |
+ |
*/ |
| 200 |
+ |
Quaternion<Real> conjugate() { |
| 201 |
+ |
return Quaternion<Real>(w(), -x(), -y(), -z()); |
| 202 |
+ |
} |
| 203 |
+ |
|
| 204 |
+ |
/** |
| 205 |
+ |
* Returns the corresponding rotation matrix (3x3) |
| 206 |
+ |
* @return a 3x3 rotation matrix |
| 207 |
+ |
*/ |
| 208 |
+ |
SquareMatrix<Real, 3, 3> toRotationMatrix3() { |
| 209 |
+ |
SquareMatrix<Real, 3, 3> rotMat3; |
| 210 |
+ |
|
| 211 |
+ |
Real w2; |
| 212 |
+ |
Real x2; |
| 213 |
+ |
Real y2; |
| 214 |
+ |
Real z2; |
| 215 |
+ |
|
| 216 |
+ |
if (!isNormalized()) |
| 217 |
+ |
normalize(); |
| 218 |
+ |
|
| 219 |
+ |
w2 = w() * w(); |
| 220 |
+ |
x2 = x() * x(); |
| 221 |
+ |
y2 = y() * y(); |
| 222 |
+ |
z2 = z() * z(); |
| 223 |
+ |
|
| 224 |
+ |
rotMat3(0, 0) = w2 + x2 - y2 - z2; |
| 225 |
+ |
rotMat3(0, 1) = 2.0 * ( x() * y() + w() * z() ); |
| 226 |
+ |
rotMat3(0, 2) = 2.0 * ( x() * z() - w() * y() ); |
| 227 |
+ |
|
| 228 |
+ |
rotMat3(1, 0) = 2.0 * ( x() * y() - w() * z() ); |
| 229 |
+ |
rotMat3(1, 1) = w2 - x2 + y2 - z2; |
| 230 |
+ |
rotMat3(1, 2) = 2.0 * ( y() * z() + w() * x() ); |
| 231 |
+ |
|
| 232 |
+ |
rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() ); |
| 233 |
+ |
rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() ); |
| 234 |
+ |
rotMat3(2, 2) = w2 - x2 -y2 +z2; |
| 235 |
+ |
} |
| 236 |
+ |
|
| 237 |
+ |
};//end Quaternion |
| 238 |
+ |
|
| 239 |
+ |
/** |
| 240 |
+ |
* Returns the multiplication of two quaternion |
| 241 |
+ |
* @return the multiplication of two quaternion |
| 242 |
+ |
* @param q1 the first quaternion |
| 243 |
+ |
* @param q2 the second quaternion |
| 244 |
+ |
*/ |
| 245 |
+ |
template<typename Real> |
| 246 |
+ |
inline Quaternion<Real> operator *(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { |
| 247 |
+ |
Quaternion<Real> result(q1); |
| 248 |
+ |
result *= q2; |
| 249 |
+ |
return result; |
| 250 |
+ |
} |
| 251 |
+ |
|
| 252 |
+ |
/** |
| 253 |
+ |
* Returns the division of two quaternion |
| 254 |
+ |
* @param q1 divisor |
| 255 |
+ |
* @param q2 dividen |
| 256 |
+ |
*/ |
| 257 |
+ |
|
| 258 |
+ |
template<typename Real> |
| 259 |
+ |
inline Quaternion<Real> operator /(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { |
| 260 |
+ |
return q1 * q2.inverse(); |
| 261 |
+ |
} |
| 262 |
+ |
|
| 263 |
+ |
/** |
| 264 |
+ |
* Returns the value of the division of a scalar by a quaternion |
| 265 |
+ |
* @return the value of the division of a scalar by a quaternion |
| 266 |
+ |
* @param s scalar |
| 267 |
+ |
* @param q quaternion |
| 268 |
+ |
* @note for a quaternion q, 1/q = q.inverse() |
| 269 |
+ |
*/ |
| 270 |
+ |
template<typename Real> |
| 271 |
+ |
Quaternion<Real> operator /(const Quaternion<Real>& s, const Quaternion<Real>& q) { |
| 272 |
+ |
|
| 273 |
+ |
Quaternion<Real> x = q.inv(); |
| 274 |
+ |
return x * s; |
| 275 |
+ |
} |
| 276 |
+ |
|
| 277 |
+ |
typedef Quaternion<double> Quat4d; |
| 278 |
|
} |
| 279 |
|
#endif //MATH_QUATERNION_HPP |