# | Line 1 | Line 1 | |
---|---|---|
1 | /* | |
2 | < | * Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project |
3 | < | * |
4 | < | * Contact: oopse@oopse.org |
5 | < | * |
6 | < | * This program is free software; you can redistribute it and/or |
7 | < | * modify it under the terms of the GNU Lesser General Public License |
8 | < | * as published by the Free Software Foundation; either version 2.1 |
9 | < | * of the License, or (at your option) any later version. |
10 | < | * All we ask is that proper credit is given for our work, which includes |
11 | < | * - but is not limited to - adding the above copyright notice to the beginning |
12 | < | * of your source code files, and to any copyright notice that you may distribute |
13 | < | * with programs based on this work. |
14 | < | * |
15 | < | * This program is distributed in the hope that it will be useful, |
16 | < | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
17 | < | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
18 | < | * GNU Lesser General Public License for more details. |
19 | < | * |
20 | < | * You should have received a copy of the GNU Lesser General Public License |
21 | < | * along with this program; if not, write to the Free Software |
22 | < | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
2 | > | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 | * | |
4 | + | * The University of Notre Dame grants you ("Licensee") a |
5 | + | * non-exclusive, royalty free, license to use, modify and |
6 | + | * redistribute this software in source and binary code form, provided |
7 | + | * that the following conditions are met: |
8 | + | * |
9 | + | * 1. Acknowledgement of the program authors must be made in any |
10 | + | * publication of scientific results based in part on use of the |
11 | + | * program. An acceptable form of acknowledgement is citation of |
12 | + | * the article in which the program was described (Matthew |
13 | + | * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 | + | * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 | + | * Parallel Simulation Engine for Molecular Dynamics," |
16 | + | * J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 | + | * |
18 | + | * 2. Redistributions of source code must retain the above copyright |
19 | + | * notice, this list of conditions and the following disclaimer. |
20 | + | * |
21 | + | * 3. Redistributions in binary form must reproduce the above copyright |
22 | + | * notice, this list of conditions and the following disclaimer in the |
23 | + | * documentation and/or other materials provided with the |
24 | + | * distribution. |
25 | + | * |
26 | + | * This software is provided "AS IS," without a warranty of any |
27 | + | * kind. All express or implied conditions, representations and |
28 | + | * warranties, including any implied warranty of merchantability, |
29 | + | * fitness for a particular purpose or non-infringement, are hereby |
30 | + | * excluded. The University of Notre Dame and its licensors shall not |
31 | + | * be liable for any damages suffered by licensee as a result of |
32 | + | * using, modifying or distributing the software or its |
33 | + | * derivatives. In no event will the University of Notre Dame or its |
34 | + | * licensors be liable for any lost revenue, profit or data, or for |
35 | + | * direct, indirect, special, consequential, incidental or punitive |
36 | + | * damages, however caused and regardless of the theory of liability, |
37 | + | * arising out of the use of or inability to use software, even if the |
38 | + | * University of Notre Dame has been advised of the possibility of |
39 | + | * such damages. |
40 | */ | |
41 | < | |
41 | > | |
42 | /** | |
43 | * @file Quaternion.hpp | |
44 | * @author Teng Lin | |
# | Line 34 | Line 50 | |
50 | #define MATH_QUATERNION_HPP | |
51 | ||
52 | #include "math/Vector.hpp" | |
53 | + | #include "math/SquareMatrix.hpp" |
54 | ||
55 | namespace oopse{ | |
56 | ||
57 | < | /** |
58 | < | * @class Quaternion Quaternion.hpp "math/Quaternion.hpp" |
59 | < | * Quaternion is a sort of a higher-level complex number. |
60 | < | * It is defined as Q = w + x*i + y*j + z*k, |
61 | < | * where w, x, y, and z are numbers of type T (e.g. double), and |
62 | < | * i*i = -1; j*j = -1; k*k = -1; |
63 | < | * i*j = k; j*k = i; k*i = j; |
64 | < | */ |
65 | < | template<typename Real> |
66 | < | class Quaternion : public Vector<Real, 4> { |
67 | < | public: |
68 | < | Quaternion(); |
57 | > | /** |
58 | > | * @class Quaternion Quaternion.hpp "math/Quaternion.hpp" |
59 | > | * Quaternion is a sort of a higher-level complex number. |
60 | > | * It is defined as Q = w + x*i + y*j + z*k, |
61 | > | * where w, x, y, and z are numbers of type T (e.g. RealType), and |
62 | > | * i*i = -1; j*j = -1; k*k = -1; |
63 | > | * i*j = k; j*k = i; k*i = j; |
64 | > | */ |
65 | > | template<typename Real> |
66 | > | class Quaternion : public Vector<Real, 4> { |
67 | > | public: |
68 | > | Quaternion() : Vector<Real, 4>() {} |
69 | ||
70 | < | /** Constructs and initializes a Quaternion from w, x, y, z values */ |
71 | < | Quaternion(Real w, Real x, Real y, Real z) { |
72 | < | data_[0] = w; |
73 | < | data_[1] = x; |
74 | < | data_[2] = y; |
75 | < | data_[3] = z; |
76 | < | } |
70 | > | /** Constructs and initializes a Quaternion from w, x, y, z values */ |
71 | > | Quaternion(Real w, Real x, Real y, Real z) { |
72 | > | this->data_[0] = w; |
73 | > | this->data_[1] = x; |
74 | > | this->data_[2] = y; |
75 | > | this->data_[3] = z; |
76 | > | } |
77 | ||
78 | < | /** |
79 | < | * |
80 | < | */ |
81 | < | Quaternion(const Vector<Real,4>& v) |
65 | < | : Vector<Real, 4>(v){ |
66 | < | } |
78 | > | /** Constructs and initializes a Quaternion from a Vector<Real,4> */ |
79 | > | Quaternion(const Vector<Real,4>& v) |
80 | > | : Vector<Real, 4>(v){ |
81 | > | } |
82 | ||
83 | < | /** */ |
84 | < | Quaternion& operator =(const Vector<Real, 4>& v){ |
85 | < | if (this == & v) |
86 | < | return *this; |
83 | > | /** copy assignment */ |
84 | > | Quaternion& operator =(const Vector<Real, 4>& v){ |
85 | > | if (this == & v) |
86 | > | return *this; |
87 | ||
88 | < | Vector<Real, 4>::operator=(v); |
88 | > | Vector<Real, 4>::operator=(v); |
89 | ||
90 | < | return *this; |
91 | < | } |
90 | > | return *this; |
91 | > | } |
92 | ||
93 | < | /** |
94 | < | * Returns the value of the first element of this quaternion. |
95 | < | * @return the value of the first element of this quaternion |
96 | < | */ |
97 | < | Real w() const { |
98 | < | return data_[0]; |
99 | < | } |
93 | > | /** |
94 | > | * Returns the value of the first element of this quaternion. |
95 | > | * @return the value of the first element of this quaternion |
96 | > | */ |
97 | > | Real w() const { |
98 | > | return this->data_[0]; |
99 | > | } |
100 | ||
101 | < | /** |
102 | < | * Returns the reference of the first element of this quaternion. |
103 | < | * @return the reference of the first element of this quaternion |
104 | < | */ |
105 | < | Real& w() { |
106 | < | return data_[0]; |
107 | < | } |
101 | > | /** |
102 | > | * Returns the reference of the first element of this quaternion. |
103 | > | * @return the reference of the first element of this quaternion |
104 | > | */ |
105 | > | Real& w() { |
106 | > | return this->data_[0]; |
107 | > | } |
108 | ||
109 | < | /** |
110 | < | * Returns the value of the first element of this quaternion. |
111 | < | * @return the value of the first element of this quaternion |
112 | < | */ |
113 | < | Real x() const { |
114 | < | return data_[1]; |
115 | < | } |
109 | > | /** |
110 | > | * Returns the value of the first element of this quaternion. |
111 | > | * @return the value of the first element of this quaternion |
112 | > | */ |
113 | > | Real x() const { |
114 | > | return this->data_[1]; |
115 | > | } |
116 | ||
117 | < | /** |
118 | < | * Returns the reference of the second element of this quaternion. |
119 | < | * @return the reference of the second element of this quaternion |
120 | < | */ |
121 | < | Real& x() { |
122 | < | return data_[1]; |
123 | < | } |
117 | > | /** |
118 | > | * Returns the reference of the second element of this quaternion. |
119 | > | * @return the reference of the second element of this quaternion |
120 | > | */ |
121 | > | Real& x() { |
122 | > | return this->data_[1]; |
123 | > | } |
124 | ||
125 | < | /** |
126 | < | * Returns the value of the thirf element of this quaternion. |
127 | < | * @return the value of the third element of this quaternion |
128 | < | */ |
129 | < | Real y() const { |
130 | < | return data_[2]; |
131 | < | } |
125 | > | /** |
126 | > | * Returns the value of the thirf element of this quaternion. |
127 | > | * @return the value of the third element of this quaternion |
128 | > | */ |
129 | > | Real y() const { |
130 | > | return this->data_[2]; |
131 | > | } |
132 | ||
133 | < | /** |
134 | < | * Returns the reference of the third element of this quaternion. |
135 | < | * @return the reference of the third element of this quaternion |
136 | < | */ |
137 | < | Real& y() { |
138 | < | return data_[2]; |
139 | < | } |
133 | > | /** |
134 | > | * Returns the reference of the third element of this quaternion. |
135 | > | * @return the reference of the third element of this quaternion |
136 | > | */ |
137 | > | Real& y() { |
138 | > | return this->data_[2]; |
139 | > | } |
140 | ||
141 | < | /** |
142 | < | * Returns the value of the fourth element of this quaternion. |
143 | < | * @return the value of the fourth element of this quaternion |
144 | < | */ |
145 | < | Real z() const { |
146 | < | return data_[3]; |
147 | < | } |
148 | < | /** |
149 | < | * Returns the reference of the fourth element of this quaternion. |
150 | < | * @return the reference of the fourth element of this quaternion |
151 | < | */ |
152 | < | Real& z() { |
153 | < | return data_[3]; |
154 | < | } |
141 | > | /** |
142 | > | * Returns the value of the fourth element of this quaternion. |
143 | > | * @return the value of the fourth element of this quaternion |
144 | > | */ |
145 | > | Real z() const { |
146 | > | return this->data_[3]; |
147 | > | } |
148 | > | /** |
149 | > | * Returns the reference of the fourth element of this quaternion. |
150 | > | * @return the reference of the fourth element of this quaternion |
151 | > | */ |
152 | > | Real& z() { |
153 | > | return this->data_[3]; |
154 | > | } |
155 | ||
156 | < | /** |
157 | < | * Returns the inverse of this quaternion |
158 | < | * @return inverse |
159 | < | * @note since quaternion is a complex number, the inverse of quaternion |
160 | < | * q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2) |
161 | < | */ |
162 | < | Quaternion<Real> inverse(){ |
163 | < | Quaternion<Real> q; |
164 | < | Real d = this->lengthSquared(); |
156 | > | /** |
157 | > | * Tests if this quaternion is equal to other quaternion |
158 | > | * @return true if equal, otherwise return false |
159 | > | * @param q quaternion to be compared |
160 | > | */ |
161 | > | inline bool operator ==(const Quaternion<Real>& q) { |
162 | > | |
163 | > | for (unsigned int i = 0; i < 4; i ++) { |
164 | > | if (!equal(this->data_[i], q[i])) { |
165 | > | return false; |
166 | > | } |
167 | > | } |
168 | ||
169 | < | q.w() = w() / d; |
170 | < | q.x() = -x() / d; |
171 | < | q.y() = -y() / d; |
172 | < | q.z() = -z() / d; |
169 | > | return true; |
170 | > | } |
171 | > | |
172 | > | /** |
173 | > | * Returns the inverse of this quaternion |
174 | > | * @return inverse |
175 | > | * @note since quaternion is a complex number, the inverse of quaternion |
176 | > | * q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2) |
177 | > | */ |
178 | > | Quaternion<Real> inverse() { |
179 | > | Quaternion<Real> q; |
180 | > | Real d = this->lengthSquare(); |
181 | ||
182 | < | return q; |
183 | < | } |
182 | > | q.w() = w() / d; |
183 | > | q.x() = -x() / d; |
184 | > | q.y() = -y() / d; |
185 | > | q.z() = -z() / d; |
186 | > | |
187 | > | return q; |
188 | > | } |
189 | ||
190 | < | /** |
191 | < | * Sets the value to the multiplication of itself and another quaternion |
192 | < | * @param q the other quaternion |
193 | < | */ |
194 | < | void mul(const Quaternion<Real>& q) { |
190 | > | /** |
191 | > | * Sets the value to the multiplication of itself and another quaternion |
192 | > | * @param q the other quaternion |
193 | > | */ |
194 | > | void mul(const Quaternion<Real>& q) { |
195 | > | Quaternion<Real> tmp(*this); |
196 | ||
197 | < | Real a0( (z() - y()) * (q.y() - q.z()) ); |
198 | < | Real a1( (w() + x()) * (q.w() + q.x()) ); |
199 | < | Real a2( (w() - x()) * (q.y() + q.z()) ); |
200 | < | Real a3( (y() + z()) * (q.w() - q.x()) ); |
201 | < | Real b0( -(x() - z()) * (q.x() - q.y()) ); |
170 | < | Real b1( -(x() + z()) * (q.x() + q.y()) ); |
171 | < | Real b2( (w() + y()) * (q.w() - q.z()) ); |
172 | < | Real b3( (w() - y()) * (q.w() + q.z()) ); |
197 | > | this->data_[0] = (tmp[0]*q[0]) -(tmp[1]*q[1]) - (tmp[2]*q[2]) - (tmp[3]*q[3]); |
198 | > | this->data_[1] = (tmp[0]*q[1]) + (tmp[1]*q[0]) + (tmp[2]*q[3]) - (tmp[3]*q[2]); |
199 | > | this->data_[2] = (tmp[0]*q[2]) + (tmp[2]*q[0]) + (tmp[3]*q[1]) - (tmp[1]*q[3]); |
200 | > | this->data_[3] = (tmp[0]*q[3]) + (tmp[3]*q[0]) + (tmp[1]*q[2]) - (tmp[2]*q[1]); |
201 | > | } |
202 | ||
203 | < | data_[0] = a0 + 0.5*(b0 + b1 + b2 + b3),; |
204 | < | data_[1] = a1 + 0.5*(b0 + b1 - b2 - b3); |
205 | < | data_[2] = a2 + 0.5*(b0 - b1 + b2 - b3), |
206 | < | data_[3] = a3 + 0.5*(b0 - b1 - b2 + b3) ); |
207 | < | } |
203 | > | void mul(const Real& s) { |
204 | > | this->data_[0] *= s; |
205 | > | this->data_[1] *= s; |
206 | > | this->data_[2] *= s; |
207 | > | this->data_[3] *= s; |
208 | > | } |
209 | ||
210 | + | /** Set the value of this quaternion to the division of itself by another quaternion */ |
211 | + | void div(Quaternion<Real>& q) { |
212 | + | mul(q.inverse()); |
213 | + | } |
214 | ||
215 | < | /** Set the value of this quaternion to the division of itself by another quaternion */ |
216 | < | void div(const Quaternion<Real>& q) { |
217 | < | mul(q.inverse()); |
218 | < | } |
215 | > | void div(const Real& s) { |
216 | > | this->data_[0] /= s; |
217 | > | this->data_[1] /= s; |
218 | > | this->data_[2] /= s; |
219 | > | this->data_[3] /= s; |
220 | > | } |
221 | ||
222 | < | Quaternion<Real>& operator *=(const Quaternion<Real>& q) { |
223 | < | mul(q); |
224 | < | return *this; |
225 | < | } |
226 | < | |
227 | < | Quaternion<Real>& operator /=(const Quaternion<Real>& q) { |
228 | < | mul(q.inverse()); |
229 | < | return *this; |
230 | < | } |
222 | > | Quaternion<Real>& operator *=(const Quaternion<Real>& q) { |
223 | > | mul(q); |
224 | > | return *this; |
225 | > | } |
226 | > | |
227 | > | Quaternion<Real>& operator *=(const Real& s) { |
228 | > | mul(s); |
229 | > | return *this; |
230 | > | } |
231 | ||
232 | < | /** |
233 | < | * Returns the conjugate quaternion of this quaternion |
234 | < | * @return the conjugate quaternion of this quaternion |
235 | < | */ |
200 | < | Quaternion<Real> conjugate() { |
201 | < | return Quaternion<Real>(w(), -x(), -y(), -z()); |
202 | < | } |
232 | > | Quaternion<Real>& operator /=(Quaternion<Real>& q) { |
233 | > | *this *= q.inverse(); |
234 | > | return *this; |
235 | > | } |
236 | ||
237 | < | /** |
238 | < | * Returns the corresponding rotation matrix (3x3) |
239 | < | * @return a 3x3 rotation matrix |
240 | < | */ |
241 | < | SquareMatrix<Real, 3, 3> toRotationMatrix3() { |
242 | < | SquareMatrix<Real, 3, 3> rotMat3; |
237 | > | Quaternion<Real>& operator /=(const Real& s) { |
238 | > | div(s); |
239 | > | return *this; |
240 | > | } |
241 | > | /** |
242 | > | * Returns the conjugate quaternion of this quaternion |
243 | > | * @return the conjugate quaternion of this quaternion |
244 | > | */ |
245 | > | Quaternion<Real> conjugate() { |
246 | > | return Quaternion<Real>(w(), -x(), -y(), -z()); |
247 | > | } |
248 | ||
249 | < | Real w2; |
250 | < | Real x2; |
251 | < | Real y2; |
252 | < | Real z2; |
249 | > | /** |
250 | > | * Returns the corresponding rotation matrix (3x3) |
251 | > | * @return a 3x3 rotation matrix |
252 | > | */ |
253 | > | SquareMatrix<Real, 3> toRotationMatrix3() { |
254 | > | SquareMatrix<Real, 3> rotMat3; |
255 | ||
256 | < | if (!isNormalized()) |
257 | < | normalize(); |
256 | > | Real w2; |
257 | > | Real x2; |
258 | > | Real y2; |
259 | > | Real z2; |
260 | > | |
261 | > | if (!this->isNormalized()) |
262 | > | this->normalize(); |
263 | ||
264 | < | w2 = w() * w(); |
265 | < | x2 = x() * x(); |
266 | < | y2 = y() * y(); |
267 | < | z2 = z() * z(); |
264 | > | w2 = w() * w(); |
265 | > | x2 = x() * x(); |
266 | > | y2 = y() * y(); |
267 | > | z2 = z() * z(); |
268 | ||
269 | < | rotMat3(0, 0) = w2 + x2 - y2 - z2; |
270 | < | rotMat3(0, 1) = 2.0 * ( x() * y() + w() * z() ); |
271 | < | rotMat3(0, 2) = 2.0 * ( x() * z() - w() * y() ); |
269 | > | rotMat3(0, 0) = w2 + x2 - y2 - z2; |
270 | > | rotMat3(0, 1) = 2.0 * ( x() * y() + w() * z() ); |
271 | > | rotMat3(0, 2) = 2.0 * ( x() * z() - w() * y() ); |
272 | ||
273 | < | rotMat3(1, 0) = 2.0 * ( x() * y() - w() * z() ); |
274 | < | rotMat3(1, 1) = w2 - x2 + y2 - z2; |
275 | < | rotMat3(1, 2) = 2.0 * ( y() * z() + w() * x() ); |
273 | > | rotMat3(1, 0) = 2.0 * ( x() * y() - w() * z() ); |
274 | > | rotMat3(1, 1) = w2 - x2 + y2 - z2; |
275 | > | rotMat3(1, 2) = 2.0 * ( y() * z() + w() * x() ); |
276 | ||
277 | < | rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() ); |
278 | < | rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() ); |
279 | < | rotMat3(2, 2) = w2 - x2 -y2 +z2; |
235 | < | } |
277 | > | rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() ); |
278 | > | rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() ); |
279 | > | rotMat3(2, 2) = w2 - x2 -y2 +z2; |
280 | ||
281 | < | };//end Quaternion |
238 | < | |
239 | < | /** |
240 | < | * Returns the multiplication of two quaternion |
241 | < | * @return the multiplication of two quaternion |
242 | < | * @param q1 the first quaternion |
243 | < | * @param q2 the second quaternion |
244 | < | */ |
245 | < | template<typename Real> |
246 | < | inline Quaternion<Real> operator *(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { |
247 | < | Quaternion<Real> result(q1); |
248 | < | result *= q2; |
249 | < | return result; |
281 | > | return rotMat3; |
282 | } | |
283 | ||
284 | < | /** |
253 | < | * Returns the division of two quaternion |
254 | < | * @param q1 divisor |
255 | < | * @param q2 dividen |
256 | < | */ |
284 | > | };//end Quaternion |
285 | ||
258 | – | template<typename Real> |
259 | – | inline Quaternion<Real> operator /(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { |
260 | – | return q1 * q2.inverse(); |
261 | – | } |
286 | ||
287 | /** | |
288 | < | * Returns the value of the division of a scalar by a quaternion |
289 | < | * @return the value of the division of a scalar by a quaternion |
290 | < | * @param s scalar |
291 | < | * @param q quaternion |
268 | < | * @note for a quaternion q, 1/q = q.inverse() |
288 | > | * Returns the vaule of scalar multiplication of this quaterion q (q * s). |
289 | > | * @return the vaule of scalar multiplication of this vector |
290 | > | * @param q the source quaternion |
291 | > | * @param s the scalar value |
292 | */ | |
293 | < | template<typename Real> |
294 | < | Quaternion<Real> operator /(const Quaternion<Real>& s, const Quaternion<Real>& q) { |
293 | > | template<typename Real, unsigned int Dim> |
294 | > | Quaternion<Real> operator * ( const Quaternion<Real>& q, Real s) { |
295 | > | Quaternion<Real> result(q); |
296 | > | result.mul(s); |
297 | > | return result; |
298 | > | } |
299 | > | |
300 | > | /** |
301 | > | * Returns the vaule of scalar multiplication of this quaterion q (q * s). |
302 | > | * @return the vaule of scalar multiplication of this vector |
303 | > | * @param s the scalar value |
304 | > | * @param q the source quaternion |
305 | > | */ |
306 | > | template<typename Real, unsigned int Dim> |
307 | > | Quaternion<Real> operator * ( const Real& s, const Quaternion<Real>& q ) { |
308 | > | Quaternion<Real> result(q); |
309 | > | result.mul(s); |
310 | > | return result; |
311 | > | } |
312 | ||
313 | < | Quaternion<Real> x = q.inv(); |
314 | < | return x * s; |
315 | < | } |
313 | > | /** |
314 | > | * Returns the multiplication of two quaternion |
315 | > | * @return the multiplication of two quaternion |
316 | > | * @param q1 the first quaternion |
317 | > | * @param q2 the second quaternion |
318 | > | */ |
319 | > | template<typename Real> |
320 | > | inline Quaternion<Real> operator *(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { |
321 | > | Quaternion<Real> result(q1); |
322 | > | result *= q2; |
323 | > | return result; |
324 | > | } |
325 | ||
326 | < | typedef Quaternion<double> Quat4d; |
326 | > | /** |
327 | > | * Returns the division of two quaternion |
328 | > | * @param q1 divisor |
329 | > | * @param q2 dividen |
330 | > | */ |
331 | > | |
332 | > | template<typename Real> |
333 | > | inline Quaternion<Real> operator /( Quaternion<Real>& q1, Quaternion<Real>& q2) { |
334 | > | return q1 * q2.inverse(); |
335 | > | } |
336 | > | |
337 | > | /** |
338 | > | * Returns the value of the division of a scalar by a quaternion |
339 | > | * @return the value of the division of a scalar by a quaternion |
340 | > | * @param s scalar |
341 | > | * @param q quaternion |
342 | > | * @note for a quaternion q, 1/q = q.inverse() |
343 | > | */ |
344 | > | template<typename Real> |
345 | > | Quaternion<Real> operator /(const Real& s, Quaternion<Real>& q) { |
346 | > | |
347 | > | Quaternion<Real> x; |
348 | > | x = q.inverse(); |
349 | > | x *= s; |
350 | > | return x; |
351 | > | } |
352 | > | |
353 | > | template <class T> |
354 | > | inline bool operator==(const Quaternion<T>& lhs, const Quaternion<T>& rhs) { |
355 | > | return equal(lhs[0] ,rhs[0]) && equal(lhs[1] , rhs[1]) && equal(lhs[2], rhs[2]) && equal(lhs[3], rhs[3]); |
356 | > | } |
357 | > | |
358 | > | typedef Quaternion<RealType> Quat4d; |
359 | } | |
360 | #endif //MATH_QUATERNION_HPP |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |