| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | *    publication of scientific results based in part on use of the | 
| 11 | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | *    the article in which the program was described (Matthew | 
| 13 | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | * | 
| 18 | * 2. Redistributions of source code must retain the above copyright | 
| 19 | *    notice, this list of conditions and the following disclaimer. | 
| 20 | * | 
| 21 | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | *    documentation and/or other materials provided with the | 
| 24 | *    distribution. | 
| 25 | * | 
| 26 | * This software is provided "AS IS," without a warranty of any | 
| 27 | * kind. All express or implied conditions, representations and | 
| 28 | * warranties, including any implied warranty of merchantability, | 
| 29 | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | * be liable for any damages suffered by licensee as a result of | 
| 32 | * using, modifying or distributing the software or its | 
| 33 | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | * damages, however caused and regardless of the theory of liability, | 
| 37 | * arising out of the use of or inability to use software, even if the | 
| 38 | * University of Notre Dame has been advised of the possibility of | 
| 39 | * such damages. | 
| 40 | */ | 
| 41 |  | 
| 42 | /** | 
| 43 | * @file Quaternion.hpp | 
| 44 | * @author Teng Lin | 
| 45 | * @date 10/11/2004 | 
| 46 | * @version 1.0 | 
| 47 | */ | 
| 48 |  | 
| 49 | #ifndef MATH_QUATERNION_HPP | 
| 50 | #define MATH_QUATERNION_HPP | 
| 51 |  | 
| 52 | #include "math/Vector.hpp" | 
| 53 | #include "math/SquareMatrix.hpp" | 
| 54 |  | 
| 55 | namespace oopse{ | 
| 56 |  | 
| 57 | /** | 
| 58 | * @class Quaternion Quaternion.hpp "math/Quaternion.hpp" | 
| 59 | * Quaternion is a sort of a higher-level complex number. | 
| 60 | * It is defined as Q = w + x*i + y*j + z*k, | 
| 61 | * where w, x, y, and z are numbers of type T (e.g. double), and | 
| 62 | * i*i = -1; j*j = -1; k*k = -1; | 
| 63 | * i*j = k; j*k = i; k*i = j; | 
| 64 | */ | 
| 65 | template<typename Real> | 
| 66 | class Quaternion : public Vector<Real, 4> { | 
| 67 | public: | 
| 68 | Quaternion() : Vector<Real, 4>() {} | 
| 69 |  | 
| 70 | /** Constructs and initializes a Quaternion from w, x, y, z values */ | 
| 71 | Quaternion(Real w, Real x, Real y, Real z) { | 
| 72 | data_[0] = w; | 
| 73 | data_[1] = x; | 
| 74 | data_[2] = y; | 
| 75 | data_[3] = z; | 
| 76 | } | 
| 77 |  | 
| 78 | /** Constructs and initializes a Quaternion from a  Vector<Real,4> */ | 
| 79 | Quaternion(const Vector<Real,4>& v) | 
| 80 | : Vector<Real, 4>(v){ | 
| 81 | } | 
| 82 |  | 
| 83 | /** copy assignment */ | 
| 84 | Quaternion& operator =(const Vector<Real, 4>& v){ | 
| 85 | if (this == & v) | 
| 86 | return *this; | 
| 87 |  | 
| 88 | Vector<Real, 4>::operator=(v); | 
| 89 |  | 
| 90 | return *this; | 
| 91 | } | 
| 92 |  | 
| 93 | /** | 
| 94 | * Returns the value of the first element of this quaternion. | 
| 95 | * @return the value of the first element of this quaternion | 
| 96 | */ | 
| 97 | Real w() const { | 
| 98 | return data_[0]; | 
| 99 | } | 
| 100 |  | 
| 101 | /** | 
| 102 | * Returns the reference of the first element of this quaternion. | 
| 103 | * @return the reference of the first element of this quaternion | 
| 104 | */ | 
| 105 | Real& w() { | 
| 106 | return data_[0]; | 
| 107 | } | 
| 108 |  | 
| 109 | /** | 
| 110 | * Returns the value of the first element of this quaternion. | 
| 111 | * @return the value of the first element of this quaternion | 
| 112 | */ | 
| 113 | Real x() const { | 
| 114 | return data_[1]; | 
| 115 | } | 
| 116 |  | 
| 117 | /** | 
| 118 | * Returns the reference of the second element of this quaternion. | 
| 119 | * @return the reference of the second element of this quaternion | 
| 120 | */ | 
| 121 | Real& x() { | 
| 122 | return data_[1]; | 
| 123 | } | 
| 124 |  | 
| 125 | /** | 
| 126 | * Returns the value of the thirf element of this quaternion. | 
| 127 | * @return the value of the third element of this quaternion | 
| 128 | */ | 
| 129 | Real y() const { | 
| 130 | return data_[2]; | 
| 131 | } | 
| 132 |  | 
| 133 | /** | 
| 134 | * Returns the reference of the third element of this quaternion. | 
| 135 | * @return the reference of the third element of this quaternion | 
| 136 | */ | 
| 137 | Real& y() { | 
| 138 | return data_[2]; | 
| 139 | } | 
| 140 |  | 
| 141 | /** | 
| 142 | * Returns the value of the fourth element of this quaternion. | 
| 143 | * @return the value of the fourth element of this quaternion | 
| 144 | */ | 
| 145 | Real z() const { | 
| 146 | return data_[3]; | 
| 147 | } | 
| 148 | /** | 
| 149 | * Returns the reference of the fourth element of this quaternion. | 
| 150 | * @return the reference of the fourth element of this quaternion | 
| 151 | */ | 
| 152 | Real& z() { | 
| 153 | return data_[3]; | 
| 154 | } | 
| 155 |  | 
| 156 | /** | 
| 157 | * Tests if this quaternion is equal to other quaternion | 
| 158 | * @return true if equal, otherwise return false | 
| 159 | * @param q quaternion to be compared | 
| 160 | */ | 
| 161 | inline bool operator ==(const Quaternion<Real>& q) { | 
| 162 |  | 
| 163 | for (unsigned int i = 0; i < 4; i ++) { | 
| 164 | if (!equal(data_[i], q[i])) { | 
| 165 | return false; | 
| 166 | } | 
| 167 | } | 
| 168 |  | 
| 169 | return true; | 
| 170 | } | 
| 171 |  | 
| 172 | /** | 
| 173 | * Returns the inverse of this quaternion | 
| 174 | * @return inverse | 
| 175 | * @note since quaternion is a complex number, the inverse of quaternion | 
| 176 | * q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2) | 
| 177 | */ | 
| 178 | Quaternion<Real> inverse() { | 
| 179 | Quaternion<Real> q; | 
| 180 | Real d = this->lengthSquare(); | 
| 181 |  | 
| 182 | q.w() = w() / d; | 
| 183 | q.x() = -x() / d; | 
| 184 | q.y() = -y() / d; | 
| 185 | q.z() = -z() / d; | 
| 186 |  | 
| 187 | return q; | 
| 188 | } | 
| 189 |  | 
| 190 | /** | 
| 191 | * Sets the value to the multiplication of itself and another quaternion | 
| 192 | * @param q the other quaternion | 
| 193 | */ | 
| 194 | void mul(const Quaternion<Real>& q) { | 
| 195 | Quaternion<Real> tmp(*this); | 
| 196 |  | 
| 197 | data_[0] = (tmp[0]*q[0]) -(tmp[1]*q[1]) - (tmp[2]*q[2]) - (tmp[3]*q[3]); | 
| 198 | data_[1] = (tmp[0]*q[1]) + (tmp[1]*q[0]) + (tmp[2]*q[3]) - (tmp[3]*q[2]); | 
| 199 | data_[2] = (tmp[0]*q[2]) + (tmp[2]*q[0]) + (tmp[3]*q[1]) - (tmp[1]*q[3]); | 
| 200 | data_[3] = (tmp[0]*q[3]) + (tmp[3]*q[0]) + (tmp[1]*q[2]) - (tmp[2]*q[1]); | 
| 201 | } | 
| 202 |  | 
| 203 | void mul(const Real& s) { | 
| 204 | data_[0] *= s; | 
| 205 | data_[1] *= s; | 
| 206 | data_[2] *= s; | 
| 207 | data_[3] *= s; | 
| 208 | } | 
| 209 |  | 
| 210 | /** Set the value of this quaternion to the division of itself by another quaternion */ | 
| 211 | void div(Quaternion<Real>& q) { | 
| 212 | mul(q.inverse()); | 
| 213 | } | 
| 214 |  | 
| 215 | void div(const Real& s) { | 
| 216 | data_[0] /= s; | 
| 217 | data_[1] /= s; | 
| 218 | data_[2] /= s; | 
| 219 | data_[3] /= s; | 
| 220 | } | 
| 221 |  | 
| 222 | Quaternion<Real>& operator *=(const Quaternion<Real>& q) { | 
| 223 | mul(q); | 
| 224 | return *this; | 
| 225 | } | 
| 226 |  | 
| 227 | Quaternion<Real>& operator *=(const Real& s) { | 
| 228 | mul(s); | 
| 229 | return *this; | 
| 230 | } | 
| 231 |  | 
| 232 | Quaternion<Real>& operator /=(Quaternion<Real>& q) { | 
| 233 | *this *= q.inverse(); | 
| 234 | return *this; | 
| 235 | } | 
| 236 |  | 
| 237 | Quaternion<Real>& operator /=(const Real& s) { | 
| 238 | div(s); | 
| 239 | return *this; | 
| 240 | } | 
| 241 | /** | 
| 242 | * Returns the conjugate quaternion of this quaternion | 
| 243 | * @return the conjugate quaternion of this quaternion | 
| 244 | */ | 
| 245 | Quaternion<Real> conjugate() { | 
| 246 | return Quaternion<Real>(w(), -x(), -y(), -z()); | 
| 247 | } | 
| 248 |  | 
| 249 | /** | 
| 250 | * Returns the corresponding rotation matrix (3x3) | 
| 251 | * @return a 3x3 rotation matrix | 
| 252 | */ | 
| 253 | SquareMatrix<Real, 3> toRotationMatrix3() { | 
| 254 | SquareMatrix<Real, 3> rotMat3; | 
| 255 |  | 
| 256 | Real w2; | 
| 257 | Real x2; | 
| 258 | Real y2; | 
| 259 | Real z2; | 
| 260 |  | 
| 261 | if (!isNormalized()) | 
| 262 | normalize(); | 
| 263 |  | 
| 264 | w2 = w() * w(); | 
| 265 | x2 = x() * x(); | 
| 266 | y2 = y() * y(); | 
| 267 | z2 = z() * z(); | 
| 268 |  | 
| 269 | rotMat3(0, 0) = w2 + x2 - y2 - z2; | 
| 270 | rotMat3(0, 1) = 2.0 * ( x() * y() + w() * z() ); | 
| 271 | rotMat3(0, 2) = 2.0 * ( x() * z() - w() * y() ); | 
| 272 |  | 
| 273 | rotMat3(1, 0) = 2.0 * ( x() * y() - w() * z() ); | 
| 274 | rotMat3(1, 1) = w2 - x2 + y2 - z2; | 
| 275 | rotMat3(1, 2) = 2.0 * ( y() * z() + w() * x() ); | 
| 276 |  | 
| 277 | rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() ); | 
| 278 | rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() ); | 
| 279 | rotMat3(2, 2) = w2 - x2 -y2 +z2; | 
| 280 |  | 
| 281 | return rotMat3; | 
| 282 | } | 
| 283 |  | 
| 284 | };//end Quaternion | 
| 285 |  | 
| 286 |  | 
| 287 | /** | 
| 288 | * Returns the vaule of scalar multiplication of this quaterion q (q * s). | 
| 289 | * @return  the vaule of scalar multiplication of this vector | 
| 290 | * @param q the source quaternion | 
| 291 | * @param s the scalar value | 
| 292 | */ | 
| 293 | template<typename Real, unsigned int Dim> | 
| 294 | Quaternion<Real> operator * ( const Quaternion<Real>& q, Real s) { | 
| 295 | Quaternion<Real> result(q); | 
| 296 | result.mul(s); | 
| 297 | return result; | 
| 298 | } | 
| 299 |  | 
| 300 | /** | 
| 301 | * Returns the vaule of scalar multiplication of this quaterion q (q * s). | 
| 302 | * @return  the vaule of scalar multiplication of this vector | 
| 303 | * @param s the scalar value | 
| 304 | * @param q the source quaternion | 
| 305 | */ | 
| 306 | template<typename Real, unsigned int Dim> | 
| 307 | Quaternion<Real> operator * ( const Real& s, const Quaternion<Real>& q ) { | 
| 308 | Quaternion<Real> result(q); | 
| 309 | result.mul(s); | 
| 310 | return result; | 
| 311 | } | 
| 312 |  | 
| 313 | /** | 
| 314 | * Returns the multiplication of two quaternion | 
| 315 | * @return the multiplication of two quaternion | 
| 316 | * @param q1 the first quaternion | 
| 317 | * @param q2 the second quaternion | 
| 318 | */ | 
| 319 | template<typename Real> | 
| 320 | inline Quaternion<Real> operator *(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { | 
| 321 | Quaternion<Real> result(q1); | 
| 322 | result *= q2; | 
| 323 | return result; | 
| 324 | } | 
| 325 |  | 
| 326 | /** | 
| 327 | * Returns the division of two quaternion | 
| 328 | * @param q1 divisor | 
| 329 | * @param q2 dividen | 
| 330 | */ | 
| 331 |  | 
| 332 | template<typename Real> | 
| 333 | inline Quaternion<Real> operator /( Quaternion<Real>& q1,  Quaternion<Real>& q2) { | 
| 334 | return q1 * q2.inverse(); | 
| 335 | } | 
| 336 |  | 
| 337 | /** | 
| 338 | * Returns the value of the division of a scalar by a quaternion | 
| 339 | * @return the value of the division of a scalar by a quaternion | 
| 340 | * @param s scalar | 
| 341 | * @param q quaternion | 
| 342 | * @note for a quaternion q, 1/q = q.inverse() | 
| 343 | */ | 
| 344 | template<typename Real> | 
| 345 | Quaternion<Real> operator /(const Real& s,  Quaternion<Real>& q) { | 
| 346 |  | 
| 347 | Quaternion<Real> x; | 
| 348 | x = q.inverse(); | 
| 349 | x *= s; | 
| 350 | return x; | 
| 351 | } | 
| 352 |  | 
| 353 | template <class T> | 
| 354 | inline bool operator==(const Quaternion<T>& lhs, const Quaternion<T>& rhs) { | 
| 355 | return equal(lhs[0] ,rhs[0]) && equal(lhs[1] , rhs[1]) && equal(lhs[2], rhs[2]) && equal(lhs[3], rhs[3]); | 
| 356 | } | 
| 357 |  | 
| 358 | typedef Quaternion<double> Quat4d; | 
| 359 | } | 
| 360 | #endif //MATH_QUATERNION_HPP |