| 6 | 
  | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
  | 
 * that the following conditions are met: | 
| 8 | 
  | 
 * | 
| 9 | 
< | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
< | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
< | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
< | 
 *    the article in which the program was described (Matthew | 
| 13 | 
< | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
< | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
< | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
< | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
< | 
 * | 
| 18 | 
< | 
 * 2. Redistributions of source code must retain the above copyright | 
| 9 | 
> | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
  | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
  | 
 * | 
| 12 | 
< | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | 
> | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
  | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
  | 
 *    documentation and/or other materials provided with the | 
| 15 | 
  | 
 *    distribution. | 
| 28 | 
  | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
  | 
 * such damages. | 
| 31 | 
+ | 
 * | 
| 32 | 
+ | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
+ | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
+ | 
 * work.  Good starting points are: | 
| 35 | 
+ | 
 *                                                                       | 
| 36 | 
+ | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
+ | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
+ | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).           | 
| 39 | 
+ | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
+ | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 42 | 
  | 
  | 
| 43 | 
  | 
/** | 
| 50 | 
  | 
#ifndef MATH_QUATERNION_HPP | 
| 51 | 
  | 
#define MATH_QUATERNION_HPP | 
| 52 | 
  | 
 | 
| 53 | 
< | 
#include "math/Vector.hpp" | 
| 53 | 
> | 
#include "math/Vector3.hpp" | 
| 54 | 
  | 
#include "math/SquareMatrix.hpp" | 
| 55 | 
+ | 
#define ISZERO(a,eps) ( (a)>-(eps) && (a)<(eps) ) | 
| 56 | 
+ | 
const RealType tiny=1.0e-6;      | 
| 57 | 
  | 
 | 
| 58 | 
< | 
namespace oopse{ | 
| 58 | 
> | 
namespace OpenMD{ | 
| 59 | 
  | 
 | 
| 60 | 
  | 
  /** | 
| 61 | 
  | 
   * @class Quaternion Quaternion.hpp "math/Quaternion.hpp" | 
| 67 | 
  | 
   */ | 
| 68 | 
  | 
  template<typename Real> | 
| 69 | 
  | 
  class Quaternion : public Vector<Real, 4> { | 
| 70 | 
+ | 
 | 
| 71 | 
  | 
  public: | 
| 72 | 
  | 
    Quaternion() : Vector<Real, 4>() {} | 
| 73 | 
  | 
 | 
| 82 | 
  | 
    /** Constructs and initializes a Quaternion from a  Vector<Real,4> */      | 
| 83 | 
  | 
    Quaternion(const Vector<Real,4>& v)  | 
| 84 | 
  | 
      : Vector<Real, 4>(v){ | 
| 85 | 
< | 
      } | 
| 85 | 
> | 
    } | 
| 86 | 
  | 
 | 
| 87 | 
  | 
    /** copy assignment */ | 
| 88 | 
  | 
    Quaternion& operator =(const Vector<Real, 4>& v){ | 
| 89 | 
  | 
      if (this == & v) | 
| 90 | 
  | 
        return *this; | 
| 91 | 
< | 
 | 
| 91 | 
> | 
       | 
| 92 | 
  | 
      Vector<Real, 4>::operator=(v); | 
| 93 | 
< | 
                 | 
| 93 | 
> | 
       | 
| 94 | 
  | 
      return *this; | 
| 95 | 
  | 
    } | 
| 96 | 
< | 
 | 
| 96 | 
> | 
     | 
| 97 | 
  | 
    /** | 
| 98 | 
  | 
     * Returns the value of the first element of this quaternion. | 
| 99 | 
  | 
     * @return the value of the first element of this quaternion | 
| 246 | 
  | 
     * Returns the conjugate quaternion of this quaternion | 
| 247 | 
  | 
     * @return the conjugate quaternion of this quaternion | 
| 248 | 
  | 
     */ | 
| 249 | 
< | 
    Quaternion<Real> conjugate() { | 
| 249 | 
> | 
    Quaternion<Real> conjugate() const { | 
| 250 | 
  | 
      return Quaternion<Real>(w(), -x(), -y(), -z());             | 
| 251 | 
+ | 
    } | 
| 252 | 
+ | 
 | 
| 253 | 
+ | 
 | 
| 254 | 
+ | 
    /** | 
| 255 | 
+ | 
       return rotation angle from -PI to PI  | 
| 256 | 
+ | 
    */ | 
| 257 | 
+ | 
    inline Real get_rotation_angle() const{ | 
| 258 | 
+ | 
      if( w() < (Real)0.0 ) | 
| 259 | 
+ | 
        return 2.0*atan2(-sqrt( x()*x() + y()*y() + z()*z() ), -w() ); | 
| 260 | 
+ | 
      else | 
| 261 | 
+ | 
        return 2.0*atan2( sqrt( x()*x() + y()*y() + z()*z() ),  w() ); | 
| 262 | 
+ | 
    } | 
| 263 | 
+ | 
 | 
| 264 | 
+ | 
    /** | 
| 265 | 
+ | 
       create a unit quaternion from axis angle representation | 
| 266 | 
+ | 
    */ | 
| 267 | 
+ | 
    Quaternion<Real> fromAxisAngle(const Vector3<Real>& axis,  | 
| 268 | 
+ | 
                                   const Real& angle){ | 
| 269 | 
+ | 
      Vector3<Real> v(axis); | 
| 270 | 
+ | 
      v.normalize(); | 
| 271 | 
+ | 
      Real half_angle = angle*0.5; | 
| 272 | 
+ | 
      Real sin_a = sin(half_angle); | 
| 273 | 
+ | 
      *this = Quaternion<Real>(cos(half_angle),  | 
| 274 | 
+ | 
                               v.x()*sin_a,  | 
| 275 | 
+ | 
                               v.y()*sin_a,  | 
| 276 | 
+ | 
                               v.z()*sin_a); | 
| 277 | 
+ | 
      return *this; | 
| 278 | 
+ | 
    } | 
| 279 | 
+ | 
     | 
| 280 | 
+ | 
    /** | 
| 281 | 
+ | 
       convert a quaternion to axis angle representation,  | 
| 282 | 
+ | 
       preserve the axis direction and angle from -PI to +PI | 
| 283 | 
+ | 
    */ | 
| 284 | 
+ | 
    void toAxisAngle(Vector3<Real>& axis, Real& angle)const { | 
| 285 | 
+ | 
      Real vl = sqrt( x()*x() + y()*y() + z()*z() ); | 
| 286 | 
+ | 
      if( vl > tiny ) { | 
| 287 | 
+ | 
        Real ivl = 1.0/vl; | 
| 288 | 
+ | 
        axis.x() = x() * ivl; | 
| 289 | 
+ | 
        axis.y() = y() * ivl; | 
| 290 | 
+ | 
        axis.z() = z() * ivl; | 
| 291 | 
+ | 
 | 
| 292 | 
+ | 
        if( w() < 0 ) | 
| 293 | 
+ | 
          angle = 2.0*atan2(-vl, -w()); //-PI,0  | 
| 294 | 
+ | 
        else | 
| 295 | 
+ | 
          angle = 2.0*atan2( vl,  w()); //0,PI  | 
| 296 | 
+ | 
      } else { | 
| 297 | 
+ | 
        axis = Vector3<Real>(0.0,0.0,0.0); | 
| 298 | 
+ | 
        angle = 0.0; | 
| 299 | 
+ | 
      } | 
| 300 | 
+ | 
    } | 
| 301 | 
+ | 
 | 
| 302 | 
+ | 
    /** | 
| 303 | 
+ | 
       shortest arc quaternion rotate one vector to another by shortest path. | 
| 304 | 
+ | 
       create rotation from -> to, for any length vectors. | 
| 305 | 
+ | 
    */ | 
| 306 | 
+ | 
    Quaternion<Real> fromShortestArc(const Vector3d& from,  | 
| 307 | 
+ | 
                                     const Vector3d& to ) { | 
| 308 | 
+ | 
       | 
| 309 | 
+ | 
      Vector3d c( cross(from,to) ); | 
| 310 | 
+ | 
      *this = Quaternion<Real>(dot(from,to),  | 
| 311 | 
+ | 
                               c.x(),  | 
| 312 | 
+ | 
                               c.y(), | 
| 313 | 
+ | 
                               c.z()); | 
| 314 | 
+ | 
 | 
| 315 | 
+ | 
      this->normalize();    // if "from" or "to" not unit, normalize quat | 
| 316 | 
+ | 
      w() += 1.0f;            // reducing angle to halfangle | 
| 317 | 
+ | 
      if( w() <= 1e-6 ) {     // angle close to PI | 
| 318 | 
+ | 
        if( ( from.z()*from.z() ) > ( from.x()*from.x() ) ) { | 
| 319 | 
+ | 
          this->data_[0] =  w();     | 
| 320 | 
+ | 
          this->data_[1] =  0.0;       //cross(from , Vector3d(1,0,0)) | 
| 321 | 
+ | 
          this->data_[2] =  from.z(); | 
| 322 | 
+ | 
          this->data_[3] = -from.y(); | 
| 323 | 
+ | 
        } else { | 
| 324 | 
+ | 
          this->data_[0] =  w(); | 
| 325 | 
+ | 
          this->data_[1] =  from.y();  //cross(from, Vector3d(0,0,1)) | 
| 326 | 
+ | 
          this->data_[2] = -from.x(); | 
| 327 | 
+ | 
          this->data_[3] =  0.0; | 
| 328 | 
+ | 
        } | 
| 329 | 
+ | 
      } | 
| 330 | 
+ | 
      this->normalize();  | 
| 331 | 
+ | 
    } | 
| 332 | 
+ | 
 | 
| 333 | 
+ | 
    Real ComputeTwist(const Quaternion& q) { | 
| 334 | 
+ | 
      return  (Real)2.0 * atan2(q.z(), q.w()); | 
| 335 | 
+ | 
    } | 
| 336 | 
+ | 
 | 
| 337 | 
+ | 
    void RemoveTwist(Quaternion& q) { | 
| 338 | 
+ | 
      Real t = ComputeTwist(q); | 
| 339 | 
+ | 
      Quaternion rt = fromAxisAngle(V3Z, t); | 
| 340 | 
+ | 
       | 
| 341 | 
+ | 
      q *= rt.inverse(); | 
| 342 | 
+ | 
    } | 
| 343 | 
+ | 
 | 
| 344 | 
+ | 
    void getTwistSwingAxisAngle(Real& twistAngle, Real& swingAngle,  | 
| 345 | 
+ | 
                                Vector3<Real>& swingAxis) { | 
| 346 | 
+ | 
       | 
| 347 | 
+ | 
      twistAngle = (Real)2.0 * atan2(z(), w()); | 
| 348 | 
+ | 
      Quaternion rt, rs; | 
| 349 | 
+ | 
      rt.fromAxisAngle(V3Z, twistAngle); | 
| 350 | 
+ | 
      rs = *this * rt.inverse(); | 
| 351 | 
+ | 
       | 
| 352 | 
+ | 
      Real vl = sqrt( rs.x()*rs.x() + rs.y()*rs.y() + rs.z()*rs.z() ); | 
| 353 | 
+ | 
      if( vl > tiny ) { | 
| 354 | 
+ | 
        Real ivl = 1.0 / vl; | 
| 355 | 
+ | 
        swingAxis.x() = rs.x() * ivl; | 
| 356 | 
+ | 
        swingAxis.y() = rs.y() * ivl; | 
| 357 | 
+ | 
        swingAxis.z() = rs.z() * ivl; | 
| 358 | 
+ | 
 | 
| 359 | 
+ | 
        if( rs.w() < 0.0 ) | 
| 360 | 
+ | 
          swingAngle = 2.0*atan2(-vl, -rs.w()); //-PI,0  | 
| 361 | 
+ | 
        else | 
| 362 | 
+ | 
          swingAngle = 2.0*atan2( vl,  rs.w()); //0,PI  | 
| 363 | 
+ | 
      } else { | 
| 364 | 
+ | 
        swingAxis = Vector3<Real>(1.0,0.0,0.0); | 
| 365 | 
+ | 
        swingAngle = 0.0; | 
| 366 | 
+ | 
      }            | 
| 367 | 
+ | 
    } | 
| 368 | 
+ | 
 | 
| 369 | 
+ | 
 | 
| 370 | 
+ | 
    Vector3<Real> rotate(const Vector3<Real>& v) { | 
| 371 | 
+ | 
 | 
| 372 | 
+ | 
      Quaternion<Real> q(v.x() * w() + v.z() * y() - v.y() * z(), | 
| 373 | 
+ | 
                         v.y() * w() + v.x() * z() - v.z() * x(), | 
| 374 | 
+ | 
                         v.z() * w() + v.y() * x() - v.x() * y(), | 
| 375 | 
+ | 
                         v.x() * x() + v.y() * y() + v.z() * z()); | 
| 376 | 
+ | 
 | 
| 377 | 
+ | 
      return Vector3<Real>(w()*q.x() + x()*q.w() + y()*q.z() - z()*q.y(), | 
| 378 | 
+ | 
                           w()*q.y() + y()*q.w() + z()*q.x() - x()*q.z(), | 
| 379 | 
+ | 
                           w()*q.z() + z()*q.w() + x()*q.y() - y()*q.x())* | 
| 380 | 
+ | 
        ( 1.0/this->lengthSquare() );       | 
| 381 | 
+ | 
    }    | 
| 382 | 
+ | 
 | 
| 383 | 
+ | 
    Quaternion<Real>& align (const Vector3<Real>& V1, | 
| 384 | 
+ | 
                             const Vector3<Real>& V2) { | 
| 385 | 
+ | 
 | 
| 386 | 
+ | 
      // If V1 and V2 are not parallel, the axis of rotation is the unit-length | 
| 387 | 
+ | 
      // vector U = Cross(V1,V2)/Length(Cross(V1,V2)).  The angle of rotation, | 
| 388 | 
+ | 
      // A, is the angle between V1 and V2.  The quaternion for the rotation is | 
| 389 | 
+ | 
      // q = cos(A/2) + sin(A/2)*(ux*i+uy*j+uz*k) where U = (ux,uy,uz). | 
| 390 | 
+ | 
      // | 
| 391 | 
+ | 
      // (1) Rather than extract A = acos(Dot(V1,V2)), multiply by 1/2, then | 
| 392 | 
+ | 
      //     compute sin(A/2) and cos(A/2), we reduce the computational costs | 
| 393 | 
+ | 
      //     by computing the bisector B = (V1+V2)/Length(V1+V2), so cos(A/2) = | 
| 394 | 
+ | 
      //     Dot(V1,B). | 
| 395 | 
+ | 
      // | 
| 396 | 
+ | 
      // (2) The rotation axis is U = Cross(V1,B)/Length(Cross(V1,B)), but | 
| 397 | 
+ | 
      //     Length(Cross(V1,B)) = Length(V1)*Length(B)*sin(A/2) = sin(A/2), in | 
| 398 | 
+ | 
      //     which case sin(A/2)*(ux*i+uy*j+uz*k) = (cx*i+cy*j+cz*k) where | 
| 399 | 
+ | 
      //     C = Cross(V1,B). | 
| 400 | 
+ | 
      // | 
| 401 | 
+ | 
      // If V1 = V2, then B = V1, cos(A/2) = 1, and U = (0,0,0).  If V1 = -V2, | 
| 402 | 
+ | 
      // then B = 0.  This can happen even if V1 is approximately -V2 using | 
| 403 | 
+ | 
      // floating point arithmetic, since Vector3::Normalize checks for | 
| 404 | 
+ | 
      // closeness to zero and returns the zero vector accordingly.  The test | 
| 405 | 
+ | 
      // for exactly zero is usually not recommend for floating point | 
| 406 | 
+ | 
      // arithmetic, but the implementation of Vector3::Normalize guarantees | 
| 407 | 
+ | 
      // the comparison is robust.  In this case, the A = pi and any axis | 
| 408 | 
+ | 
      // perpendicular to V1 may be used as the rotation axis. | 
| 409 | 
+ | 
 | 
| 410 | 
+ | 
      Vector3<Real> Bisector = V1 + V2; | 
| 411 | 
+ | 
      Bisector.normalize(); | 
| 412 | 
+ | 
 | 
| 413 | 
+ | 
      Real CosHalfAngle = dot(V1,Bisector); | 
| 414 | 
+ | 
 | 
| 415 | 
+ | 
      this->data_[0] = CosHalfAngle; | 
| 416 | 
+ | 
 | 
| 417 | 
+ | 
      if (CosHalfAngle != (Real)0.0) { | 
| 418 | 
+ | 
        Vector3<Real> Cross = cross(V1, Bisector); | 
| 419 | 
+ | 
        this->data_[1] = Cross.x(); | 
| 420 | 
+ | 
        this->data_[2] = Cross.y(); | 
| 421 | 
+ | 
        this->data_[3] = Cross.z(); | 
| 422 | 
+ | 
      } else { | 
| 423 | 
+ | 
        Real InvLength; | 
| 424 | 
+ | 
        if (fabs(V1[0]) >= fabs(V1[1])) { | 
| 425 | 
+ | 
          // V1.x or V1.z is the largest magnitude component | 
| 426 | 
+ | 
          InvLength = (Real)1.0/sqrt(V1[0]*V1[0] + V1[2]*V1[2]); | 
| 427 | 
+ | 
 | 
| 428 | 
+ | 
          this->data_[1] = -V1[2]*InvLength; | 
| 429 | 
+ | 
          this->data_[2] = (Real)0.0; | 
| 430 | 
+ | 
          this->data_[3] = +V1[0]*InvLength; | 
| 431 | 
+ | 
        } else { | 
| 432 | 
+ | 
          // V1.y or V1.z is the largest magnitude component | 
| 433 | 
+ | 
          InvLength = (Real)1.0 / sqrt(V1[1]*V1[1] + V1[2]*V1[2]); | 
| 434 | 
+ | 
           | 
| 435 | 
+ | 
          this->data_[1] = (Real)0.0; | 
| 436 | 
+ | 
          this->data_[2] = +V1[2]*InvLength; | 
| 437 | 
+ | 
          this->data_[3] = -V1[1]*InvLength; | 
| 438 | 
+ | 
        } | 
| 439 | 
+ | 
      } | 
| 440 | 
+ | 
      return *this; | 
| 441 | 
  | 
    } | 
| 442 | 
  | 
 | 
| 443 | 
+ | 
    void toTwistSwing ( Real& tw, Real& sx, Real& sy ) { | 
| 444 | 
+ | 
       | 
| 445 | 
+ | 
      // First test if the swing is in the singularity: | 
| 446 | 
+ | 
 | 
| 447 | 
+ | 
      if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; return; } | 
| 448 | 
+ | 
 | 
| 449 | 
+ | 
      // Decompose into twist-swing by solving the equation: | 
| 450 | 
+ | 
      // | 
| 451 | 
+ | 
      //                       Qtwist(t*2) * Qswing(s*2) = q | 
| 452 | 
+ | 
      // | 
| 453 | 
+ | 
      // note: (x,y) is the normalized swing axis (x*x+y*y=1) | 
| 454 | 
+ | 
      // | 
| 455 | 
+ | 
      //          ( Ct 0 0 St ) * ( Cs xSs ySs 0 ) = ( qw qx qy qz ) | 
| 456 | 
+ | 
      //  ( CtCs  xSsCt-yStSs  xStSs+ySsCt  StCs ) = ( qw qx qy qz )      (1) | 
| 457 | 
+ | 
      // From (1): CtCs / StCs = qw/qz => Ct/St = qw/qz => tan(t) = qz/qw (2) | 
| 458 | 
+ | 
      // | 
| 459 | 
+ | 
      // The swing rotation/2 s comes from: | 
| 460 | 
+ | 
      // | 
| 461 | 
+ | 
      // From (1): (CtCs)^2 + (StCs)^2 = qw^2 + qz^2 =>   | 
| 462 | 
+ | 
      //                                       Cs = sqrt ( qw^2 + qz^2 ) (3) | 
| 463 | 
+ | 
      // | 
| 464 | 
+ | 
      // From (1): (xSsCt-yStSs)^2 + (xStSs+ySsCt)^2 = qx^2 + qy^2 =>  | 
| 465 | 
+ | 
      //                                       Ss = sqrt ( qx^2 + qy^2 ) (4) | 
| 466 | 
+ | 
      // From (1):  |SsCt -StSs| |x| = |qx| | 
| 467 | 
+ | 
      //            |StSs +SsCt| |y|   |qy|                              (5) | 
| 468 | 
+ | 
 | 
| 469 | 
+ | 
      Real qw, qx, qy, qz; | 
| 470 | 
+ | 
       | 
| 471 | 
+ | 
      if ( w()<0 ) { | 
| 472 | 
+ | 
        qw=-w();  | 
| 473 | 
+ | 
        qx=-x();  | 
| 474 | 
+ | 
        qy=-y();  | 
| 475 | 
+ | 
        qz=-z(); | 
| 476 | 
+ | 
      } else { | 
| 477 | 
+ | 
        qw=w();  | 
| 478 | 
+ | 
        qx=x();  | 
| 479 | 
+ | 
        qy=y();  | 
| 480 | 
+ | 
        qz=z(); | 
| 481 | 
+ | 
      } | 
| 482 | 
+ | 
       | 
| 483 | 
+ | 
      Real t = atan2 ( qz, qw ); // from (2) | 
| 484 | 
+ | 
      Real s = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) ); // from (3) | 
| 485 | 
+ | 
                                                              // and (4) | 
| 486 | 
+ | 
 | 
| 487 | 
+ | 
      Real x=0.0, y=0.0, sins=sin(s); | 
| 488 | 
+ | 
 | 
| 489 | 
+ | 
      if ( !ISZERO(sins,tiny) ) { | 
| 490 | 
+ | 
        Real sint = sin(t); | 
| 491 | 
+ | 
        Real cost = cos(t); | 
| 492 | 
+ | 
         | 
| 493 | 
+ | 
        // by solving the linear system in (5): | 
| 494 | 
+ | 
        y = (-qx*sint + qy*cost)/sins; | 
| 495 | 
+ | 
        x = ( qx*cost + qy*sint)/sins; | 
| 496 | 
+ | 
      } | 
| 497 | 
+ | 
 | 
| 498 | 
+ | 
      tw = (Real)2.0*t; | 
| 499 | 
+ | 
      sx = (Real)2.0*x*s; | 
| 500 | 
+ | 
      sy = (Real)2.0*y*s; | 
| 501 | 
+ | 
    } | 
| 502 | 
+ | 
 | 
| 503 | 
+ | 
    void toSwingTwist(Real& sx, Real& sy, Real& tw ) { | 
| 504 | 
+ | 
 | 
| 505 | 
+ | 
      // Decompose q into swing-twist using a similar development as | 
| 506 | 
+ | 
      // in function toTwistSwing | 
| 507 | 
+ | 
 | 
| 508 | 
+ | 
      if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; } | 
| 509 | 
+ | 
       | 
| 510 | 
+ | 
      Real qw, qx, qy, qz; | 
| 511 | 
+ | 
      if ( w() < 0 ){ | 
| 512 | 
+ | 
        qw=-w();  | 
| 513 | 
+ | 
        qx=-x();  | 
| 514 | 
+ | 
        qy=-y();  | 
| 515 | 
+ | 
        qz=-z(); | 
| 516 | 
+ | 
      } else { | 
| 517 | 
+ | 
        qw=w();  | 
| 518 | 
+ | 
        qx=x();  | 
| 519 | 
+ | 
        qy=y();  | 
| 520 | 
+ | 
        qz=z();  | 
| 521 | 
+ | 
      } | 
| 522 | 
+ | 
 | 
| 523 | 
+ | 
      // Get the twist t: | 
| 524 | 
+ | 
      Real t = 2.0 * atan2(qz,qw); | 
| 525 | 
+ | 
       | 
| 526 | 
+ | 
      Real bet = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) ); | 
| 527 | 
+ | 
      Real gam = t/2.0; | 
| 528 | 
+ | 
      Real sinc = ISZERO(bet,tiny)? 1.0 : sin(bet)/bet; | 
| 529 | 
+ | 
      Real singam = sin(gam); | 
| 530 | 
+ | 
      Real cosgam = cos(gam); | 
| 531 | 
+ | 
 | 
| 532 | 
+ | 
      sx = Real( (2.0/sinc) * (cosgam*qx - singam*qy) ); | 
| 533 | 
+ | 
      sy = Real( (2.0/sinc) * (singam*qx + cosgam*qy) ); | 
| 534 | 
+ | 
      tw = Real( t ); | 
| 535 | 
+ | 
    } | 
| 536 | 
+ | 
       | 
| 537 | 
+ | 
     | 
| 538 | 
+ | 
     | 
| 539 | 
  | 
    /** | 
| 540 | 
  | 
     * Returns the corresponding rotation matrix (3x3) | 
| 541 | 
  | 
     * @return a 3x3 rotation matrix | 
| 542 | 
  | 
     */ | 
| 543 | 
  | 
    SquareMatrix<Real, 3> toRotationMatrix3() { | 
| 544 | 
  | 
      SquareMatrix<Real, 3> rotMat3; | 
| 545 | 
< | 
 | 
| 545 | 
> | 
       | 
| 546 | 
  | 
      Real w2; | 
| 547 | 
  | 
      Real x2; | 
| 548 | 
  | 
      Real y2; |