| 34 |  | #define MATH_QUATERNION_HPP | 
| 35 |  |  | 
| 36 |  | #include "math/Vector.hpp" | 
| 37 | + | #include "math/SquareMatrix.hpp" | 
| 38 |  |  | 
| 39 |  | namespace oopse{ | 
| 40 |  |  | 
| 49 |  | template<typename Real> | 
| 50 |  | class Quaternion : public Vector<Real, 4> { | 
| 51 |  | public: | 
| 52 | < | Quaternion(); | 
| 52 | > | Quaternion() : Vector<Real, 4>() {} | 
| 53 |  |  | 
| 54 |  | /** Constructs and initializes a Quaternion from w, x, y, z values */ | 
| 55 |  | Quaternion(Real w, Real x, Real y, Real z) { | 
| 59 |  | data_[3] = z; | 
| 60 |  | } | 
| 61 |  |  | 
| 62 | < | /** | 
| 62 | < | * | 
| 63 | < | */ | 
| 62 | > | /** Constructs and initializes a Quaternion from a  Vector<Real,4> */ | 
| 63 |  | Quaternion(const Vector<Real,4>& v) | 
| 64 |  | : Vector<Real, 4>(v){ | 
| 65 |  | } | 
| 66 |  |  | 
| 67 | < | /** */ | 
| 67 | > | /** copy assignment */ | 
| 68 |  | Quaternion& operator =(const Vector<Real, 4>& v){ | 
| 69 |  | if (this == & v) | 
| 70 |  | return *this; | 
| 138 |  | } | 
| 139 |  |  | 
| 140 |  | /** | 
| 141 | + | * Tests if this quaternion is equal to other quaternion | 
| 142 | + | * @return true if equal, otherwise return false | 
| 143 | + | * @param q quaternion to be compared | 
| 144 | + | */ | 
| 145 | + | inline bool operator ==(const Quaternion<Real>& q) { | 
| 146 | + |  | 
| 147 | + | for (unsigned int i = 0; i < 4; i ++) { | 
| 148 | + | if (!equal(data_[i], q[i])) { | 
| 149 | + | return false; | 
| 150 | + | } | 
| 151 | + | } | 
| 152 | + |  | 
| 153 | + | return true; | 
| 154 | + | } | 
| 155 | + |  | 
| 156 | + | /** | 
| 157 |  | * Returns the inverse of this quaternion | 
| 158 |  | * @return inverse | 
| 159 |  | * @note since quaternion is a complex number, the inverse of quaternion | 
| 160 |  | * q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2) | 
| 161 |  | */ | 
| 162 | < | Quaternion<Real> inverse(){ | 
| 162 | > | Quaternion<Real> inverse() { | 
| 163 |  | Quaternion<Real> q; | 
| 164 | < | Real d = this->lengthSquared(); | 
| 164 | > | Real d = this->lengthSquare(); | 
| 165 |  |  | 
| 166 |  | q.w() = w() / d; | 
| 167 |  | q.x() = -x() / d; | 
| 176 |  | * @param q the other quaternion | 
| 177 |  | */ | 
| 178 |  | void mul(const Quaternion<Real>& q) { | 
| 179 | + | Quaternion<Real> tmp(*this); | 
| 180 |  |  | 
| 181 | < | Real a0( (z() - y()) * (q.y() - q.z()) ); | 
| 182 | < | Real a1( (w() + x()) * (q.w() + q.x()) ); | 
| 183 | < | Real a2( (w() - x()) * (q.y() + q.z()) ); | 
| 184 | < | Real a3( (y() + z()) * (q.w() - q.x()) ); | 
| 185 | < | Real b0( -(x() - z()) * (q.x() - q.y()) ); | 
| 170 | < | Real b1( -(x() + z()) * (q.x() + q.y()) ); | 
| 171 | < | Real b2( (w() + y()) * (q.w() - q.z()) ); | 
| 172 | < | Real b3( (w() - y()) * (q.w() + q.z()) ); | 
| 181 | > | data_[0] = (tmp[0]*q[0]) -(tmp[1]*q[1]) - (tmp[2]*q[2]) - (tmp[3]*q[3]); | 
| 182 | > | data_[1] = (tmp[0]*q[1]) + (tmp[1]*q[0]) + (tmp[2]*q[3]) - (tmp[3]*q[2]); | 
| 183 | > | data_[2] = (tmp[0]*q[2]) + (tmp[2]*q[0]) + (tmp[3]*q[1]) - (tmp[1]*q[3]); | 
| 184 | > | data_[3] = (tmp[0]*q[3]) + (tmp[3]*q[0]) + (tmp[1]*q[2]) - (tmp[2]*q[1]); | 
| 185 | > | } | 
| 186 |  |  | 
| 187 | < | data_[0] = a0 + 0.5*(b0 + b1 + b2 + b3),; | 
| 188 | < | data_[1] = a1 + 0.5*(b0 + b1 - b2 - b3); | 
| 189 | < | data_[2] = a2 + 0.5*(b0 - b1 + b2 - b3), | 
| 190 | < | data_[3] = a3 + 0.5*(b0 - b1 - b2 + b3) ); | 
| 187 | > | void mul(const Real& s) { | 
| 188 | > | data_[0] *= s; | 
| 189 | > | data_[1] *= s; | 
| 190 | > | data_[2] *= s; | 
| 191 | > | data_[3] *= s; | 
| 192 |  | } | 
| 193 |  |  | 
| 180 | – |  | 
| 194 |  | /** Set the value of this quaternion to the division of itself by another quaternion */ | 
| 195 | < | void div(const Quaternion<Real>& q) { | 
| 195 | > | void div(Quaternion<Real>& q) { | 
| 196 |  | mul(q.inverse()); | 
| 197 |  | } | 
| 198 | + |  | 
| 199 | + | void div(const Real& s) { | 
| 200 | + | data_[0] /= s; | 
| 201 | + | data_[1] /= s; | 
| 202 | + | data_[2] /= s; | 
| 203 | + | data_[3] /= s; | 
| 204 | + | } | 
| 205 |  |  | 
| 206 |  | Quaternion<Real>& operator *=(const Quaternion<Real>& q) { | 
| 207 |  | mul(q); | 
| 208 |  | return *this; | 
| 209 |  | } | 
| 210 | < |  | 
| 211 | < | Quaternion<Real>& operator /=(const Quaternion<Real>& q) { | 
| 212 | < | mul(q.inverse()); | 
| 210 | > |  | 
| 211 | > | Quaternion<Real>& operator *=(const Real& s) { | 
| 212 | > | mul(s); | 
| 213 |  | return *this; | 
| 214 |  | } | 
| 215 |  |  | 
| 216 | + | Quaternion<Real>& operator /=(Quaternion<Real>& q) { | 
| 217 | + | *this *= q.inverse(); | 
| 218 | + | return *this; | 
| 219 | + | } | 
| 220 | + |  | 
| 221 | + | Quaternion<Real>& operator /=(const Real& s) { | 
| 222 | + | div(s); | 
| 223 | + | return *this; | 
| 224 | + | } | 
| 225 |  | /** | 
| 226 |  | * Returns the conjugate quaternion of this quaternion | 
| 227 |  | * @return the conjugate quaternion of this quaternion | 
| 261 |  | rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() ); | 
| 262 |  | rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() ); | 
| 263 |  | rotMat3(2, 2) = w2 - x2 -y2 +z2; | 
| 264 | + |  | 
| 265 | + | return rotMat3; | 
| 266 |  | } | 
| 267 |  |  | 
| 268 |  | };//end Quaternion | 
| 269 |  |  | 
| 270 | + |  | 
| 271 |  | /** | 
| 272 | + | * Returns the vaule of scalar multiplication of this quaterion q (q * s). | 
| 273 | + | * @return  the vaule of scalar multiplication of this vector | 
| 274 | + | * @param q the source quaternion | 
| 275 | + | * @param s the scalar value | 
| 276 | + | */ | 
| 277 | + | template<typename Real, unsigned int Dim> | 
| 278 | + | Quaternion<Real> operator * ( const Quaternion<Real>& q, Real s) { | 
| 279 | + | Quaternion<Real> result(q); | 
| 280 | + | result.mul(s); | 
| 281 | + | return result; | 
| 282 | + | } | 
| 283 | + |  | 
| 284 | + | /** | 
| 285 | + | * Returns the vaule of scalar multiplication of this quaterion q (q * s). | 
| 286 | + | * @return  the vaule of scalar multiplication of this vector | 
| 287 | + | * @param s the scalar value | 
| 288 | + | * @param q the source quaternion | 
| 289 | + | */ | 
| 290 | + | template<typename Real, unsigned int Dim> | 
| 291 | + | Quaternion<Real> operator * ( const Real& s, const Quaternion<Real>& q ) { | 
| 292 | + | Quaternion<Real> result(q); | 
| 293 | + | result.mul(s); | 
| 294 | + | return result; | 
| 295 | + | } | 
| 296 | + |  | 
| 297 | + | /** | 
| 298 |  | * Returns the multiplication of two quaternion | 
| 299 |  | * @return the multiplication of two quaternion | 
| 300 |  | * @param q1 the first quaternion | 
| 314 |  | */ | 
| 315 |  |  | 
| 316 |  | template<typename Real> | 
| 317 | < | inline Quaternion<Real> operator /(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { | 
| 317 | > | inline Quaternion<Real> operator /( Quaternion<Real>& q1,  Quaternion<Real>& q2) { | 
| 318 |  | return q1 * q2.inverse(); | 
| 319 |  | } | 
| 320 |  |  | 
| 326 |  | * @note for a quaternion q, 1/q = q.inverse() | 
| 327 |  | */ | 
| 328 |  | template<typename Real> | 
| 329 | < | Quaternion<Real> operator /(const Real& s, const Quaternion<Real>& q) { | 
| 329 | > | Quaternion<Real> operator /(const Real& s,  Quaternion<Real>& q) { | 
| 330 |  |  | 
| 331 | < | Quaternion<Real> x = q.inv(); | 
| 332 | < | return x * s; | 
| 331 | > | Quaternion<Real> x; | 
| 332 | > | x = q.inverse(); | 
| 333 | > | x *= s; | 
| 334 | > | return x; | 
| 335 |  | } | 
| 336 | < |  | 
| 336 | > |  | 
| 337 | > | template <class T> | 
| 338 | > | inline bool operator==(const Quaternion<T>& lhs, const Quaternion<T>& rhs) { | 
| 339 | > | return equal(lhs[0] ,rhs[0]) && equal(lhs[1] , rhs[1]) && equal(lhs[2], rhs[2]) && equal(lhs[3], rhs[3]); | 
| 340 | > | } | 
| 341 | > |  | 
| 342 |  | typedef Quaternion<double> Quat4d; | 
| 343 |  | } | 
| 344 |  | #endif //MATH_QUATERNION_HPP |