| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 40 | */ | 
| 41 |  | 
| 42 | /** | 
| 43 | * @file Quaternion.hpp | 
| 44 | * @author Teng Lin | 
| 45 | * @date 10/11/2004 | 
| 46 | * @version 1.0 | 
| 47 | */ | 
| 48 |  | 
| 49 | #ifndef MATH_QUATERNION_HPP | 
| 50 | #define MATH_QUATERNION_HPP | 
| 51 |  | 
| 52 | #include "math/Vector3.hpp" | 
| 53 | #include "math/SquareMatrix.hpp" | 
| 54 | #define ISZERO(a,eps) ( (a)>-(eps) && (a)<(eps) ) | 
| 55 | const RealType tiny=1.0e-6; | 
| 56 |  | 
| 57 | namespace OpenMD{ | 
| 58 |  | 
| 59 | /** | 
| 60 | * @class Quaternion Quaternion.hpp "math/Quaternion.hpp" | 
| 61 | * Quaternion is a sort of a higher-level complex number. | 
| 62 | * It is defined as Q = w + x*i + y*j + z*k, | 
| 63 | * where w, x, y, and z are numbers of type T (e.g. RealType), and | 
| 64 | * i*i = -1; j*j = -1; k*k = -1; | 
| 65 | * i*j = k; j*k = i; k*i = j; | 
| 66 | */ | 
| 67 | template<typename Real> | 
| 68 | class Quaternion : public Vector<Real, 4> { | 
| 69 |  | 
| 70 | public: | 
| 71 | Quaternion() : Vector<Real, 4>() {} | 
| 72 |  | 
| 73 | /** Constructs and initializes a Quaternion from w, x, y, z values */ | 
| 74 | Quaternion(Real w, Real x, Real y, Real z) { | 
| 75 | this->data_[0] = w; | 
| 76 | this->data_[1] = x; | 
| 77 | this->data_[2] = y; | 
| 78 | this->data_[3] = z; | 
| 79 | } | 
| 80 |  | 
| 81 | /** Constructs and initializes a Quaternion from a  Vector<Real,4> */ | 
| 82 | Quaternion(const Vector<Real,4>& v) | 
| 83 | : Vector<Real, 4>(v){ | 
| 84 | } | 
| 85 |  | 
| 86 | /** copy assignment */ | 
| 87 | Quaternion& operator =(const Vector<Real, 4>& v){ | 
| 88 | if (this == & v) | 
| 89 | return *this; | 
| 90 |  | 
| 91 | Vector<Real, 4>::operator=(v); | 
| 92 |  | 
| 93 | return *this; | 
| 94 | } | 
| 95 |  | 
| 96 | /** | 
| 97 | * Returns the value of the first element of this quaternion. | 
| 98 | * @return the value of the first element of this quaternion | 
| 99 | */ | 
| 100 | Real w() const { | 
| 101 | return this->data_[0]; | 
| 102 | } | 
| 103 |  | 
| 104 | /** | 
| 105 | * Returns the reference of the first element of this quaternion. | 
| 106 | * @return the reference of the first element of this quaternion | 
| 107 | */ | 
| 108 | Real& w() { | 
| 109 | return this->data_[0]; | 
| 110 | } | 
| 111 |  | 
| 112 | /** | 
| 113 | * Returns the value of the first element of this quaternion. | 
| 114 | * @return the value of the first element of this quaternion | 
| 115 | */ | 
| 116 | Real x() const { | 
| 117 | return this->data_[1]; | 
| 118 | } | 
| 119 |  | 
| 120 | /** | 
| 121 | * Returns the reference of the second element of this quaternion. | 
| 122 | * @return the reference of the second element of this quaternion | 
| 123 | */ | 
| 124 | Real& x() { | 
| 125 | return this->data_[1]; | 
| 126 | } | 
| 127 |  | 
| 128 | /** | 
| 129 | * Returns the value of the thirf element of this quaternion. | 
| 130 | * @return the value of the third element of this quaternion | 
| 131 | */ | 
| 132 | Real y() const { | 
| 133 | return this->data_[2]; | 
| 134 | } | 
| 135 |  | 
| 136 | /** | 
| 137 | * Returns the reference of the third element of this quaternion. | 
| 138 | * @return the reference of the third element of this quaternion | 
| 139 | */ | 
| 140 | Real& y() { | 
| 141 | return this->data_[2]; | 
| 142 | } | 
| 143 |  | 
| 144 | /** | 
| 145 | * Returns the value of the fourth element of this quaternion. | 
| 146 | * @return the value of the fourth element of this quaternion | 
| 147 | */ | 
| 148 | Real z() const { | 
| 149 | return this->data_[3]; | 
| 150 | } | 
| 151 | /** | 
| 152 | * Returns the reference of the fourth element of this quaternion. | 
| 153 | * @return the reference of the fourth element of this quaternion | 
| 154 | */ | 
| 155 | Real& z() { | 
| 156 | return this->data_[3]; | 
| 157 | } | 
| 158 |  | 
| 159 | /** | 
| 160 | * Tests if this quaternion is equal to other quaternion | 
| 161 | * @return true if equal, otherwise return false | 
| 162 | * @param q quaternion to be compared | 
| 163 | */ | 
| 164 | inline bool operator ==(const Quaternion<Real>& q) { | 
| 165 |  | 
| 166 | for (unsigned int i = 0; i < 4; i ++) { | 
| 167 | if (!equal(this->data_[i], q[i])) { | 
| 168 | return false; | 
| 169 | } | 
| 170 | } | 
| 171 |  | 
| 172 | return true; | 
| 173 | } | 
| 174 |  | 
| 175 | /** | 
| 176 | * Returns the inverse of this quaternion | 
| 177 | * @return inverse | 
| 178 | * @note since quaternion is a complex number, the inverse of quaternion | 
| 179 | * q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2) | 
| 180 | */ | 
| 181 | Quaternion<Real> inverse() { | 
| 182 | Quaternion<Real> q; | 
| 183 | Real d = this->lengthSquare(); | 
| 184 |  | 
| 185 | q.w() = w() / d; | 
| 186 | q.x() = -x() / d; | 
| 187 | q.y() = -y() / d; | 
| 188 | q.z() = -z() / d; | 
| 189 |  | 
| 190 | return q; | 
| 191 | } | 
| 192 |  | 
| 193 | /** | 
| 194 | * Sets the value to the multiplication of itself and another quaternion | 
| 195 | * @param q the other quaternion | 
| 196 | */ | 
| 197 | void mul(const Quaternion<Real>& q) { | 
| 198 | Quaternion<Real> tmp(*this); | 
| 199 |  | 
| 200 | this->data_[0] = (tmp[0]*q[0]) -(tmp[1]*q[1]) - (tmp[2]*q[2]) - (tmp[3]*q[3]); | 
| 201 | this->data_[1] = (tmp[0]*q[1]) + (tmp[1]*q[0]) + (tmp[2]*q[3]) - (tmp[3]*q[2]); | 
| 202 | this->data_[2] = (tmp[0]*q[2]) + (tmp[2]*q[0]) + (tmp[3]*q[1]) - (tmp[1]*q[3]); | 
| 203 | this->data_[3] = (tmp[0]*q[3]) + (tmp[3]*q[0]) + (tmp[1]*q[2]) - (tmp[2]*q[1]); | 
| 204 | } | 
| 205 |  | 
| 206 | void mul(const Real& s) { | 
| 207 | this->data_[0] *= s; | 
| 208 | this->data_[1] *= s; | 
| 209 | this->data_[2] *= s; | 
| 210 | this->data_[3] *= s; | 
| 211 | } | 
| 212 |  | 
| 213 | /** Set the value of this quaternion to the division of itself by another quaternion */ | 
| 214 | void div(Quaternion<Real>& q) { | 
| 215 | mul(q.inverse()); | 
| 216 | } | 
| 217 |  | 
| 218 | void div(const Real& s) { | 
| 219 | this->data_[0] /= s; | 
| 220 | this->data_[1] /= s; | 
| 221 | this->data_[2] /= s; | 
| 222 | this->data_[3] /= s; | 
| 223 | } | 
| 224 |  | 
| 225 | Quaternion<Real>& operator *=(const Quaternion<Real>& q) { | 
| 226 | mul(q); | 
| 227 | return *this; | 
| 228 | } | 
| 229 |  | 
| 230 | Quaternion<Real>& operator *=(const Real& s) { | 
| 231 | mul(s); | 
| 232 | return *this; | 
| 233 | } | 
| 234 |  | 
| 235 | Quaternion<Real>& operator /=(Quaternion<Real>& q) { | 
| 236 | *this *= q.inverse(); | 
| 237 | return *this; | 
| 238 | } | 
| 239 |  | 
| 240 | Quaternion<Real>& operator /=(const Real& s) { | 
| 241 | div(s); | 
| 242 | return *this; | 
| 243 | } | 
| 244 | /** | 
| 245 | * Returns the conjugate quaternion of this quaternion | 
| 246 | * @return the conjugate quaternion of this quaternion | 
| 247 | */ | 
| 248 | Quaternion<Real> conjugate() const { | 
| 249 | return Quaternion<Real>(w(), -x(), -y(), -z()); | 
| 250 | } | 
| 251 |  | 
| 252 |  | 
| 253 | /** | 
| 254 | return rotation angle from -PI to PI | 
| 255 | */ | 
| 256 | inline Real get_rotation_angle() const{ | 
| 257 | if( w < (Real)0.0 ) | 
| 258 | return 2.0*atan2(-sqrt( x()*x() + y()*y() + z()*z() ), -w() ); | 
| 259 | else | 
| 260 | return 2.0*atan2( sqrt( x()*x() + y()*y() + z()*z() ),  w() ); | 
| 261 | } | 
| 262 |  | 
| 263 | /** | 
| 264 | create a unit quaternion from axis angle representation | 
| 265 | */ | 
| 266 | Quaternion<Real> fromAxisAngle(const Vector3<Real>& axis, | 
| 267 | const Real& angle){ | 
| 268 | Vector3<Real> v(axis); | 
| 269 | v.normalize(); | 
| 270 | Real half_angle = angle*0.5; | 
| 271 | Real sin_a = sin(half_angle); | 
| 272 | *this = Quaternion<Real>(cos(half_angle), | 
| 273 | v.x()*sin_a, | 
| 274 | v.y()*sin_a, | 
| 275 | v.z()*sin_a); | 
| 276 | return *this; | 
| 277 | } | 
| 278 |  | 
| 279 | /** | 
| 280 | convert a quaternion to axis angle representation, | 
| 281 | preserve the axis direction and angle from -PI to +PI | 
| 282 | */ | 
| 283 | void toAxisAngle(Vector3<Real>& axis, Real& angle)const { | 
| 284 | Real vl = sqrt( x()*x() + y()*y() + z()*z() ); | 
| 285 | if( vl > tiny ) { | 
| 286 | Real ivl = 1.0/vl; | 
| 287 | axis.x() = x() * ivl; | 
| 288 | axis.y() = y() * ivl; | 
| 289 | axis.z() = z() * ivl; | 
| 290 |  | 
| 291 | if( w() < 0 ) | 
| 292 | angle = 2.0*atan2(-vl, -w()); //-PI,0 | 
| 293 | else | 
| 294 | angle = 2.0*atan2( vl,  w()); //0,PI | 
| 295 | } else { | 
| 296 | axis = Vector3<Real>(0.0,0.0,0.0); | 
| 297 | angle = 0.0; | 
| 298 | } | 
| 299 | } | 
| 300 |  | 
| 301 | /** | 
| 302 | shortest arc quaternion rotate one vector to another by shortest path. | 
| 303 | create rotation from -> to, for any length vectors. | 
| 304 | */ | 
| 305 | Quaternion<Real> fromShortestArc(const Vector3d& from, | 
| 306 | const Vector3d& to ) { | 
| 307 |  | 
| 308 | Vector3d c( cross(from,to) ); | 
| 309 | *this = Quaternion<Real>(dot(from,to), | 
| 310 | c.x(), | 
| 311 | c.y(), | 
| 312 | c.z()); | 
| 313 |  | 
| 314 | this->normalize();    // if "from" or "to" not unit, normalize quat | 
| 315 | w += 1.0f;            // reducing angle to halfangle | 
| 316 | if( w <= 1e-6 ) {     // angle close to PI | 
| 317 | if( ( from.z()*from.z() ) > ( from.x()*from.x() ) ) { | 
| 318 | this->data_[0] =  w; | 
| 319 | this->data_[1] =  0.0;       //cross(from , Vector3d(1,0,0)) | 
| 320 | this->data_[2] =  from.z(); | 
| 321 | this->data_[3] = -from.y(); | 
| 322 | } else { | 
| 323 | this->data_[0] =  w; | 
| 324 | this->data_[1] =  from.y();  //cross(from, Vector3d(0,0,1)) | 
| 325 | this->data_[2] = -from.x(); | 
| 326 | this->data_[3] =  0.0; | 
| 327 | } | 
| 328 | } | 
| 329 | this->normalize(); | 
| 330 | } | 
| 331 |  | 
| 332 | Real ComputeTwist(const Quaternion& q) { | 
| 333 | return  (Real)2.0 * atan2(q.z(), q.w()); | 
| 334 | } | 
| 335 |  | 
| 336 | void RemoveTwist(Quaternion& q) { | 
| 337 | Real t = ComputeTwist(q); | 
| 338 | Quaternion rt = fromAxisAngle(V3Z, t); | 
| 339 |  | 
| 340 | q *= rt.inverse(); | 
| 341 | } | 
| 342 |  | 
| 343 | void getTwistSwingAxisAngle(Real& twistAngle, Real& swingAngle, | 
| 344 | Vector3<Real>& swingAxis) { | 
| 345 |  | 
| 346 | twistAngle = (Real)2.0 * atan2(z(), w()); | 
| 347 | Quaternion rt, rs; | 
| 348 | rt.fromAxisAngle(V3Z, twistAngle); | 
| 349 | rs = *this * rt.inverse(); | 
| 350 |  | 
| 351 | Real vl = sqrt( rs.x()*rs.x() + rs.y()*rs.y() + rs.z()*rs.z() ); | 
| 352 | if( vl > tiny ) { | 
| 353 | Real ivl = 1.0 / vl; | 
| 354 | swingAxis.x() = rs.x() * ivl; | 
| 355 | swingAxis.y() = rs.y() * ivl; | 
| 356 | swingAxis.z() = rs.z() * ivl; | 
| 357 |  | 
| 358 | if( rs.w() < 0.0 ) | 
| 359 | swingAngle = 2.0*atan2(-vl, -rs.w()); //-PI,0 | 
| 360 | else | 
| 361 | swingAngle = 2.0*atan2( vl,  rs.w()); //0,PI | 
| 362 | } else { | 
| 363 | swingAxis = Vector3<Real>(1.0,0.0,0.0); | 
| 364 | swingAngle = 0.0; | 
| 365 | } | 
| 366 | } | 
| 367 |  | 
| 368 |  | 
| 369 | Vector3<Real> rotate(const Vector3<Real>& v) { | 
| 370 |  | 
| 371 | Quaternion<Real> q(v.x() * w() + v.z() * y() - v.y() * z(), | 
| 372 | v.y() * w() + v.x() * z() - v.z() * x(), | 
| 373 | v.z() * w() + v.y() * x() - v.x() * y(), | 
| 374 | v.x() * x() + v.y() * y() + v.z() * z()); | 
| 375 |  | 
| 376 | return Vector3<Real>(w()*q.x() + x()*q.w() + y()*q.z() - z()*q.y(), | 
| 377 | w()*q.y() + y()*q.w() + z()*q.x() - x()*q.z(), | 
| 378 | w()*q.z() + z()*q.w() + x()*q.y() - y()*q.x())* | 
| 379 | ( 1.0/this->lengthSquare() ); | 
| 380 | } | 
| 381 |  | 
| 382 | Quaternion<Real>& align (const Vector3<Real>& V1, | 
| 383 | const Vector3<Real>& V2) { | 
| 384 |  | 
| 385 | // If V1 and V2 are not parallel, the axis of rotation is the unit-length | 
| 386 | // vector U = Cross(V1,V2)/Length(Cross(V1,V2)).  The angle of rotation, | 
| 387 | // A, is the angle between V1 and V2.  The quaternion for the rotation is | 
| 388 | // q = cos(A/2) + sin(A/2)*(ux*i+uy*j+uz*k) where U = (ux,uy,uz). | 
| 389 | // | 
| 390 | // (1) Rather than extract A = acos(Dot(V1,V2)), multiply by 1/2, then | 
| 391 | //     compute sin(A/2) and cos(A/2), we reduce the computational costs | 
| 392 | //     by computing the bisector B = (V1+V2)/Length(V1+V2), so cos(A/2) = | 
| 393 | //     Dot(V1,B). | 
| 394 | // | 
| 395 | // (2) The rotation axis is U = Cross(V1,B)/Length(Cross(V1,B)), but | 
| 396 | //     Length(Cross(V1,B)) = Length(V1)*Length(B)*sin(A/2) = sin(A/2), in | 
| 397 | //     which case sin(A/2)*(ux*i+uy*j+uz*k) = (cx*i+cy*j+cz*k) where | 
| 398 | //     C = Cross(V1,B). | 
| 399 | // | 
| 400 | // If V1 = V2, then B = V1, cos(A/2) = 1, and U = (0,0,0).  If V1 = -V2, | 
| 401 | // then B = 0.  This can happen even if V1 is approximately -V2 using | 
| 402 | // floating point arithmetic, since Vector3::Normalize checks for | 
| 403 | // closeness to zero and returns the zero vector accordingly.  The test | 
| 404 | // for exactly zero is usually not recommend for floating point | 
| 405 | // arithmetic, but the implementation of Vector3::Normalize guarantees | 
| 406 | // the comparison is robust.  In this case, the A = pi and any axis | 
| 407 | // perpendicular to V1 may be used as the rotation axis. | 
| 408 |  | 
| 409 | Vector3<Real> Bisector = V1 + V2; | 
| 410 | Bisector.normalize(); | 
| 411 |  | 
| 412 | Real CosHalfAngle = dot(V1,Bisector); | 
| 413 |  | 
| 414 | this->data_[0] = CosHalfAngle; | 
| 415 |  | 
| 416 | if (CosHalfAngle != (Real)0.0) { | 
| 417 | Vector3<Real> Cross = cross(V1, Bisector); | 
| 418 | this->data_[1] = Cross.x(); | 
| 419 | this->data_[2] = Cross.y(); | 
| 420 | this->data_[3] = Cross.z(); | 
| 421 | } else { | 
| 422 | Real InvLength; | 
| 423 | if (fabs(V1[0]) >= fabs(V1[1])) { | 
| 424 | // V1.x or V1.z is the largest magnitude component | 
| 425 | InvLength = (Real)1.0/sqrt(V1[0]*V1[0] + V1[2]*V1[2]); | 
| 426 |  | 
| 427 | this->data_[1] = -V1[2]*InvLength; | 
| 428 | this->data_[2] = (Real)0.0; | 
| 429 | this->data_[3] = +V1[0]*InvLength; | 
| 430 | } else { | 
| 431 | // V1.y or V1.z is the largest magnitude component | 
| 432 | InvLength = (Real)1.0 / sqrt(V1[1]*V1[1] + V1[2]*V1[2]); | 
| 433 |  | 
| 434 | this->data_[1] = (Real)0.0; | 
| 435 | this->data_[2] = +V1[2]*InvLength; | 
| 436 | this->data_[3] = -V1[1]*InvLength; | 
| 437 | } | 
| 438 | } | 
| 439 | return *this; | 
| 440 | } | 
| 441 |  | 
| 442 | void toTwistSwing ( Real& tw, Real& sx, Real& sy ) { | 
| 443 |  | 
| 444 | // First test if the swing is in the singularity: | 
| 445 |  | 
| 446 | if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; return; } | 
| 447 |  | 
| 448 | // Decompose into twist-swing by solving the equation: | 
| 449 | // | 
| 450 | //                       Qtwist(t*2) * Qswing(s*2) = q | 
| 451 | // | 
| 452 | // note: (x,y) is the normalized swing axis (x*x+y*y=1) | 
| 453 | // | 
| 454 | //          ( Ct 0 0 St ) * ( Cs xSs ySs 0 ) = ( qw qx qy qz ) | 
| 455 | //  ( CtCs  xSsCt-yStSs  xStSs+ySsCt  StCs ) = ( qw qx qy qz )      (1) | 
| 456 | // From (1): CtCs / StCs = qw/qz => Ct/St = qw/qz => tan(t) = qz/qw (2) | 
| 457 | // | 
| 458 | // The swing rotation/2 s comes from: | 
| 459 | // | 
| 460 | // From (1): (CtCs)^2 + (StCs)^2 = qw^2 + qz^2 => | 
| 461 | //                                       Cs = sqrt ( qw^2 + qz^2 ) (3) | 
| 462 | // | 
| 463 | // From (1): (xSsCt-yStSs)^2 + (xStSs+ySsCt)^2 = qx^2 + qy^2 => | 
| 464 | //                                       Ss = sqrt ( qx^2 + qy^2 ) (4) | 
| 465 | // From (1):  |SsCt -StSs| |x| = |qx| | 
| 466 | //            |StSs +SsCt| |y|   |qy|                              (5) | 
| 467 |  | 
| 468 | Real qw, qx, qy, qz; | 
| 469 |  | 
| 470 | if ( w()<0 ) { | 
| 471 | qw=-w(); | 
| 472 | qx=-x(); | 
| 473 | qy=-y(); | 
| 474 | qz=-z(); | 
| 475 | } else { | 
| 476 | qw=w(); | 
| 477 | qx=x(); | 
| 478 | qy=y(); | 
| 479 | qz=z(); | 
| 480 | } | 
| 481 |  | 
| 482 | Real t = atan2 ( qz, qw ); // from (2) | 
| 483 | Real s = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) ); // from (3) | 
| 484 | // and (4) | 
| 485 |  | 
| 486 | Real x=0.0, y=0.0, sins=sin(s); | 
| 487 |  | 
| 488 | if ( !ISZERO(sins,tiny) ) { | 
| 489 | Real sint = sin(t); | 
| 490 | Real cost = cos(t); | 
| 491 |  | 
| 492 | // by solving the linear system in (5): | 
| 493 | y = (-qx*sint + qy*cost)/sins; | 
| 494 | x = ( qx*cost + qy*sint)/sins; | 
| 495 | } | 
| 496 |  | 
| 497 | tw = (Real)2.0*t; | 
| 498 | sx = (Real)2.0*x*s; | 
| 499 | sy = (Real)2.0*y*s; | 
| 500 | } | 
| 501 |  | 
| 502 | void toSwingTwist(Real& sx, Real& sy, Real& tw ) { | 
| 503 |  | 
| 504 | // Decompose q into swing-twist using a similar development as | 
| 505 | // in function toTwistSwing | 
| 506 |  | 
| 507 | if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; } | 
| 508 |  | 
| 509 | Real qw, qx, qy, qz; | 
| 510 | if ( w() < 0 ){ | 
| 511 | qw=-w(); | 
| 512 | qx=-x(); | 
| 513 | qy=-y(); | 
| 514 | qz=-z(); | 
| 515 | } else { | 
| 516 | qw=w(); | 
| 517 | qx=x(); | 
| 518 | qy=y(); | 
| 519 | qz=z(); | 
| 520 | } | 
| 521 |  | 
| 522 | // Get the twist t: | 
| 523 | Real t = 2.0 * atan2(qz,qw); | 
| 524 |  | 
| 525 | Real bet = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) ); | 
| 526 | Real gam = t/2.0; | 
| 527 | Real sinc = ISZERO(bet,tiny)? 1.0 : sin(bet)/bet; | 
| 528 | Real singam = sin(gam); | 
| 529 | Real cosgam = cos(gam); | 
| 530 |  | 
| 531 | sx = Real( (2.0/sinc) * (cosgam*qx - singam*qy) ); | 
| 532 | sy = Real( (2.0/sinc) * (singam*qx + cosgam*qy) ); | 
| 533 | tw = Real( t ); | 
| 534 | } | 
| 535 |  | 
| 536 |  | 
| 537 |  | 
| 538 | /** | 
| 539 | * Returns the corresponding rotation matrix (3x3) | 
| 540 | * @return a 3x3 rotation matrix | 
| 541 | */ | 
| 542 | SquareMatrix<Real, 3> toRotationMatrix3() { | 
| 543 | SquareMatrix<Real, 3> rotMat3; | 
| 544 |  | 
| 545 | Real w2; | 
| 546 | Real x2; | 
| 547 | Real y2; | 
| 548 | Real z2; | 
| 549 |  | 
| 550 | if (!this->isNormalized()) | 
| 551 | this->normalize(); | 
| 552 |  | 
| 553 | w2 = w() * w(); | 
| 554 | x2 = x() * x(); | 
| 555 | y2 = y() * y(); | 
| 556 | z2 = z() * z(); | 
| 557 |  | 
| 558 | rotMat3(0, 0) = w2 + x2 - y2 - z2; | 
| 559 | rotMat3(0, 1) = 2.0 * ( x() * y() + w() * z() ); | 
| 560 | rotMat3(0, 2) = 2.0 * ( x() * z() - w() * y() ); | 
| 561 |  | 
| 562 | rotMat3(1, 0) = 2.0 * ( x() * y() - w() * z() ); | 
| 563 | rotMat3(1, 1) = w2 - x2 + y2 - z2; | 
| 564 | rotMat3(1, 2) = 2.0 * ( y() * z() + w() * x() ); | 
| 565 |  | 
| 566 | rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() ); | 
| 567 | rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() ); | 
| 568 | rotMat3(2, 2) = w2 - x2 -y2 +z2; | 
| 569 |  | 
| 570 | return rotMat3; | 
| 571 | } | 
| 572 |  | 
| 573 | };//end Quaternion | 
| 574 |  | 
| 575 |  | 
| 576 | /** | 
| 577 | * Returns the vaule of scalar multiplication of this quaterion q (q * s). | 
| 578 | * @return  the vaule of scalar multiplication of this vector | 
| 579 | * @param q the source quaternion | 
| 580 | * @param s the scalar value | 
| 581 | */ | 
| 582 | template<typename Real, unsigned int Dim> | 
| 583 | Quaternion<Real> operator * ( const Quaternion<Real>& q, Real s) { | 
| 584 | Quaternion<Real> result(q); | 
| 585 | result.mul(s); | 
| 586 | return result; | 
| 587 | } | 
| 588 |  | 
| 589 | /** | 
| 590 | * Returns the vaule of scalar multiplication of this quaterion q (q * s). | 
| 591 | * @return  the vaule of scalar multiplication of this vector | 
| 592 | * @param s the scalar value | 
| 593 | * @param q the source quaternion | 
| 594 | */ | 
| 595 | template<typename Real, unsigned int Dim> | 
| 596 | Quaternion<Real> operator * ( const Real& s, const Quaternion<Real>& q ) { | 
| 597 | Quaternion<Real> result(q); | 
| 598 | result.mul(s); | 
| 599 | return result; | 
| 600 | } | 
| 601 |  | 
| 602 | /** | 
| 603 | * Returns the multiplication of two quaternion | 
| 604 | * @return the multiplication of two quaternion | 
| 605 | * @param q1 the first quaternion | 
| 606 | * @param q2 the second quaternion | 
| 607 | */ | 
| 608 | template<typename Real> | 
| 609 | inline Quaternion<Real> operator *(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { | 
| 610 | Quaternion<Real> result(q1); | 
| 611 | result *= q2; | 
| 612 | return result; | 
| 613 | } | 
| 614 |  | 
| 615 | /** | 
| 616 | * Returns the division of two quaternion | 
| 617 | * @param q1 divisor | 
| 618 | * @param q2 dividen | 
| 619 | */ | 
| 620 |  | 
| 621 | template<typename Real> | 
| 622 | inline Quaternion<Real> operator /( Quaternion<Real>& q1,  Quaternion<Real>& q2) { | 
| 623 | return q1 * q2.inverse(); | 
| 624 | } | 
| 625 |  | 
| 626 | /** | 
| 627 | * Returns the value of the division of a scalar by a quaternion | 
| 628 | * @return the value of the division of a scalar by a quaternion | 
| 629 | * @param s scalar | 
| 630 | * @param q quaternion | 
| 631 | * @note for a quaternion q, 1/q = q.inverse() | 
| 632 | */ | 
| 633 | template<typename Real> | 
| 634 | Quaternion<Real> operator /(const Real& s,  Quaternion<Real>& q) { | 
| 635 |  | 
| 636 | Quaternion<Real> x; | 
| 637 | x = q.inverse(); | 
| 638 | x *= s; | 
| 639 | return x; | 
| 640 | } | 
| 641 |  | 
| 642 | template <class T> | 
| 643 | inline bool operator==(const Quaternion<T>& lhs, const Quaternion<T>& rhs) { | 
| 644 | return equal(lhs[0] ,rhs[0]) && equal(lhs[1] , rhs[1]) && equal(lhs[2], rhs[2]) && equal(lhs[3], rhs[3]); | 
| 645 | } | 
| 646 |  | 
| 647 | typedef Quaternion<RealType> Quat4d; | 
| 648 | } | 
| 649 | #endif //MATH_QUATERNION_HPP |