| 1 | /* | 
| 2 | * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project | 
| 3 | * | 
| 4 | * Contact: oopse@oopse.org | 
| 5 | * | 
| 6 | * This program is free software; you can redistribute it and/or | 
| 7 | * modify it under the terms of the GNU Lesser General Public License | 
| 8 | * as published by the Free Software Foundation; either version 2.1 | 
| 9 | * of the License, or (at your option) any later version. | 
| 10 | * All we ask is that proper credit is given for our work, which includes | 
| 11 | * - but is not limited to - adding the above copyright notice to the beginning | 
| 12 | * of your source code files, and to any copyright notice that you may distribute | 
| 13 | * with programs based on this work. | 
| 14 | * | 
| 15 | * This program is distributed in the hope that it will be useful, | 
| 16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 18 | * GNU Lesser General Public License for more details. | 
| 19 | * | 
| 20 | * You should have received a copy of the GNU Lesser General Public License | 
| 21 | * along with this program; if not, write to the Free Software | 
| 22 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA. | 
| 23 | * | 
| 24 | */ | 
| 25 |  | 
| 26 | /** | 
| 27 | * @file Quaternion.hpp | 
| 28 | * @author Teng Lin | 
| 29 | * @date 10/11/2004 | 
| 30 | * @version 1.0 | 
| 31 | */ | 
| 32 |  | 
| 33 | #ifndef MATH_QUATERNION_HPP | 
| 34 | #define MATH_QUATERNION_HPP | 
| 35 |  | 
| 36 | #include "math/Vector.hpp" | 
| 37 | #include "math/SquareMatrix.hpp" | 
| 38 |  | 
| 39 | namespace oopse{ | 
| 40 |  | 
| 41 | /** | 
| 42 | * @class Quaternion Quaternion.hpp "math/Quaternion.hpp" | 
| 43 | * Quaternion is a sort of a higher-level complex number. | 
| 44 | * It is defined as Q = w + x*i + y*j + z*k, | 
| 45 | * where w, x, y, and z are numbers of type T (e.g. double), and | 
| 46 | * i*i = -1; j*j = -1; k*k = -1; | 
| 47 | * i*j = k; j*k = i; k*i = j; | 
| 48 | */ | 
| 49 | template<typename Real> | 
| 50 | class Quaternion : public Vector<Real, 4> { | 
| 51 | public: | 
| 52 | Quaternion() : Vector<Real, 4>() {} | 
| 53 |  | 
| 54 | /** Constructs and initializes a Quaternion from w, x, y, z values */ | 
| 55 | Quaternion(Real w, Real x, Real y, Real z) { | 
| 56 | data_[0] = w; | 
| 57 | data_[1] = x; | 
| 58 | data_[2] = y; | 
| 59 | data_[3] = z; | 
| 60 | } | 
| 61 |  | 
| 62 | /** Constructs and initializes a Quaternion from a  Vector<Real,4> */ | 
| 63 | Quaternion(const Vector<Real,4>& v) | 
| 64 | : Vector<Real, 4>(v){ | 
| 65 | } | 
| 66 |  | 
| 67 | /** copy assignment */ | 
| 68 | Quaternion& operator =(const Vector<Real, 4>& v){ | 
| 69 | if (this == & v) | 
| 70 | return *this; | 
| 71 |  | 
| 72 | Vector<Real, 4>::operator=(v); | 
| 73 |  | 
| 74 | return *this; | 
| 75 | } | 
| 76 |  | 
| 77 | /** | 
| 78 | * Returns the value of the first element of this quaternion. | 
| 79 | * @return the value of the first element of this quaternion | 
| 80 | */ | 
| 81 | Real w() const { | 
| 82 | return data_[0]; | 
| 83 | } | 
| 84 |  | 
| 85 | /** | 
| 86 | * Returns the reference of the first element of this quaternion. | 
| 87 | * @return the reference of the first element of this quaternion | 
| 88 | */ | 
| 89 | Real& w() { | 
| 90 | return data_[0]; | 
| 91 | } | 
| 92 |  | 
| 93 | /** | 
| 94 | * Returns the value of the first element of this quaternion. | 
| 95 | * @return the value of the first element of this quaternion | 
| 96 | */ | 
| 97 | Real x() const { | 
| 98 | return data_[1]; | 
| 99 | } | 
| 100 |  | 
| 101 | /** | 
| 102 | * Returns the reference of the second element of this quaternion. | 
| 103 | * @return the reference of the second element of this quaternion | 
| 104 | */ | 
| 105 | Real& x() { | 
| 106 | return data_[1]; | 
| 107 | } | 
| 108 |  | 
| 109 | /** | 
| 110 | * Returns the value of the thirf element of this quaternion. | 
| 111 | * @return the value of the third element of this quaternion | 
| 112 | */ | 
| 113 | Real y() const { | 
| 114 | return data_[2]; | 
| 115 | } | 
| 116 |  | 
| 117 | /** | 
| 118 | * Returns the reference of the third element of this quaternion. | 
| 119 | * @return the reference of the third element of this quaternion | 
| 120 | */ | 
| 121 | Real& y() { | 
| 122 | return data_[2]; | 
| 123 | } | 
| 124 |  | 
| 125 | /** | 
| 126 | * Returns the value of the fourth element of this quaternion. | 
| 127 | * @return the value of the fourth element of this quaternion | 
| 128 | */ | 
| 129 | Real z() const { | 
| 130 | return data_[3]; | 
| 131 | } | 
| 132 | /** | 
| 133 | * Returns the reference of the fourth element of this quaternion. | 
| 134 | * @return the reference of the fourth element of this quaternion | 
| 135 | */ | 
| 136 | Real& z() { | 
| 137 | return data_[3]; | 
| 138 | } | 
| 139 |  | 
| 140 | /** | 
| 141 | * Tests if this quaternion is equal to other quaternion | 
| 142 | * @return true if equal, otherwise return false | 
| 143 | * @param q quaternion to be compared | 
| 144 | */ | 
| 145 | inline bool operator ==(const Quaternion<Real>& q) { | 
| 146 |  | 
| 147 | for (unsigned int i = 0; i < 4; i ++) { | 
| 148 | if (!equal(data_[i], q[i])) { | 
| 149 | return false; | 
| 150 | } | 
| 151 | } | 
| 152 |  | 
| 153 | return true; | 
| 154 | } | 
| 155 |  | 
| 156 | /** | 
| 157 | * Returns the inverse of this quaternion | 
| 158 | * @return inverse | 
| 159 | * @note since quaternion is a complex number, the inverse of quaternion | 
| 160 | * q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2) | 
| 161 | */ | 
| 162 | Quaternion<Real> inverse() { | 
| 163 | Quaternion<Real> q; | 
| 164 | Real d = this->lengthSquare(); | 
| 165 |  | 
| 166 | q.w() = w() / d; | 
| 167 | q.x() = -x() / d; | 
| 168 | q.y() = -y() / d; | 
| 169 | q.z() = -z() / d; | 
| 170 |  | 
| 171 | return q; | 
| 172 | } | 
| 173 |  | 
| 174 | /** | 
| 175 | * Sets the value to the multiplication of itself and another quaternion | 
| 176 | * @param q the other quaternion | 
| 177 | */ | 
| 178 | void mul(const Quaternion<Real>& q) { | 
| 179 | Quaternion<Real> tmp(*this); | 
| 180 |  | 
| 181 | data_[0] = (tmp[0]*q[0]) -(tmp[1]*q[1]) - (tmp[2]*q[2]) - (tmp[3]*q[3]); | 
| 182 | data_[1] = (tmp[0]*q[1]) + (tmp[1]*q[0]) + (tmp[2]*q[3]) - (tmp[3]*q[2]); | 
| 183 | data_[2] = (tmp[0]*q[2]) + (tmp[2]*q[0]) + (tmp[3]*q[1]) - (tmp[1]*q[3]); | 
| 184 | data_[3] = (tmp[0]*q[3]) + (tmp[3]*q[0]) + (tmp[1]*q[2]) - (tmp[2]*q[1]); | 
| 185 | } | 
| 186 |  | 
| 187 | void mul(const Real& s) { | 
| 188 | data_[0] *= s; | 
| 189 | data_[1] *= s; | 
| 190 | data_[2] *= s; | 
| 191 | data_[3] *= s; | 
| 192 | } | 
| 193 |  | 
| 194 | /** Set the value of this quaternion to the division of itself by another quaternion */ | 
| 195 | void div(Quaternion<Real>& q) { | 
| 196 | mul(q.inverse()); | 
| 197 | } | 
| 198 |  | 
| 199 | void div(const Real& s) { | 
| 200 | data_[0] /= s; | 
| 201 | data_[1] /= s; | 
| 202 | data_[2] /= s; | 
| 203 | data_[3] /= s; | 
| 204 | } | 
| 205 |  | 
| 206 | Quaternion<Real>& operator *=(const Quaternion<Real>& q) { | 
| 207 | mul(q); | 
| 208 | return *this; | 
| 209 | } | 
| 210 |  | 
| 211 | Quaternion<Real>& operator *=(const Real& s) { | 
| 212 | mul(s); | 
| 213 | return *this; | 
| 214 | } | 
| 215 |  | 
| 216 | Quaternion<Real>& operator /=(Quaternion<Real>& q) { | 
| 217 | *this *= q.inverse(); | 
| 218 | return *this; | 
| 219 | } | 
| 220 |  | 
| 221 | Quaternion<Real>& operator /=(const Real& s) { | 
| 222 | div(s); | 
| 223 | return *this; | 
| 224 | } | 
| 225 | /** | 
| 226 | * Returns the conjugate quaternion of this quaternion | 
| 227 | * @return the conjugate quaternion of this quaternion | 
| 228 | */ | 
| 229 | Quaternion<Real> conjugate() { | 
| 230 | return Quaternion<Real>(w(), -x(), -y(), -z()); | 
| 231 | } | 
| 232 |  | 
| 233 | /** | 
| 234 | * Returns the corresponding rotation matrix (3x3) | 
| 235 | * @return a 3x3 rotation matrix | 
| 236 | */ | 
| 237 | SquareMatrix<Real, 3> toRotationMatrix3() { | 
| 238 | SquareMatrix<Real, 3> rotMat3; | 
| 239 |  | 
| 240 | Real w2; | 
| 241 | Real x2; | 
| 242 | Real y2; | 
| 243 | Real z2; | 
| 244 |  | 
| 245 | if (!isNormalized()) | 
| 246 | normalize(); | 
| 247 |  | 
| 248 | w2 = w() * w(); | 
| 249 | x2 = x() * x(); | 
| 250 | y2 = y() * y(); | 
| 251 | z2 = z() * z(); | 
| 252 |  | 
| 253 | rotMat3(0, 0) = w2 + x2 - y2 - z2; | 
| 254 | rotMat3(0, 1) = 2.0 * ( x() * y() + w() * z() ); | 
| 255 | rotMat3(0, 2) = 2.0 * ( x() * z() - w() * y() ); | 
| 256 |  | 
| 257 | rotMat3(1, 0) = 2.0 * ( x() * y() - w() * z() ); | 
| 258 | rotMat3(1, 1) = w2 - x2 + y2 - z2; | 
| 259 | rotMat3(1, 2) = 2.0 * ( y() * z() + w() * x() ); | 
| 260 |  | 
| 261 | rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() ); | 
| 262 | rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() ); | 
| 263 | rotMat3(2, 2) = w2 - x2 -y2 +z2; | 
| 264 |  | 
| 265 | return rotMat3; | 
| 266 | } | 
| 267 |  | 
| 268 | };//end Quaternion | 
| 269 |  | 
| 270 |  | 
| 271 | /** | 
| 272 | * Returns the vaule of scalar multiplication of this quaterion q (q * s). | 
| 273 | * @return  the vaule of scalar multiplication of this vector | 
| 274 | * @param q the source quaternion | 
| 275 | * @param s the scalar value | 
| 276 | */ | 
| 277 | template<typename Real, unsigned int Dim> | 
| 278 | Quaternion<Real> operator * ( const Quaternion<Real>& q, Real s) { | 
| 279 | Quaternion<Real> result(q); | 
| 280 | result.mul(s); | 
| 281 | return result; | 
| 282 | } | 
| 283 |  | 
| 284 | /** | 
| 285 | * Returns the vaule of scalar multiplication of this quaterion q (q * s). | 
| 286 | * @return  the vaule of scalar multiplication of this vector | 
| 287 | * @param s the scalar value | 
| 288 | * @param q the source quaternion | 
| 289 | */ | 
| 290 | template<typename Real, unsigned int Dim> | 
| 291 | Quaternion<Real> operator * ( const Real& s, const Quaternion<Real>& q ) { | 
| 292 | Quaternion<Real> result(q); | 
| 293 | result.mul(s); | 
| 294 | return result; | 
| 295 | } | 
| 296 |  | 
| 297 | /** | 
| 298 | * Returns the multiplication of two quaternion | 
| 299 | * @return the multiplication of two quaternion | 
| 300 | * @param q1 the first quaternion | 
| 301 | * @param q2 the second quaternion | 
| 302 | */ | 
| 303 | template<typename Real> | 
| 304 | inline Quaternion<Real> operator *(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { | 
| 305 | Quaternion<Real> result(q1); | 
| 306 | result *= q2; | 
| 307 | return result; | 
| 308 | } | 
| 309 |  | 
| 310 | /** | 
| 311 | * Returns the division of two quaternion | 
| 312 | * @param q1 divisor | 
| 313 | * @param q2 dividen | 
| 314 | */ | 
| 315 |  | 
| 316 | template<typename Real> | 
| 317 | inline Quaternion<Real> operator /( Quaternion<Real>& q1,  Quaternion<Real>& q2) { | 
| 318 | return q1 * q2.inverse(); | 
| 319 | } | 
| 320 |  | 
| 321 | /** | 
| 322 | * Returns the value of the division of a scalar by a quaternion | 
| 323 | * @return the value of the division of a scalar by a quaternion | 
| 324 | * @param s scalar | 
| 325 | * @param q quaternion | 
| 326 | * @note for a quaternion q, 1/q = q.inverse() | 
| 327 | */ | 
| 328 | template<typename Real> | 
| 329 | Quaternion<Real> operator /(const Real& s,  Quaternion<Real>& q) { | 
| 330 |  | 
| 331 | Quaternion<Real> x; | 
| 332 | x = q.inverse(); | 
| 333 | x *= s; | 
| 334 | return x; | 
| 335 | } | 
| 336 |  | 
| 337 | template <class T> | 
| 338 | inline bool operator==(const Quaternion<T>& lhs, const Quaternion<T>& rhs) { | 
| 339 | return equal(lhs[0] ,rhs[0]) && equal(lhs[1] , rhs[1]) && equal(lhs[2], rhs[2]) && equal(lhs[3], rhs[3]); | 
| 340 | } | 
| 341 |  | 
| 342 | typedef Quaternion<double> Quat4d; | 
| 343 | } | 
| 344 | #endif //MATH_QUATERNION_HPP |