| 6 |  | * redistribute this software in source and binary code form, provided | 
| 7 |  | * that the following conditions are met: | 
| 8 |  | * | 
| 9 | < | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | < | *    publication of scientific results based in part on use of the | 
| 11 | < | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | < | *    the article in which the program was described (Matthew | 
| 13 | < | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | < | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | < | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | < | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | < | * | 
| 18 | < | * 2. Redistributions of source code must retain the above copyright | 
| 9 | > | * 1. Redistributions of source code must retain the above copyright | 
| 10 |  | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  | * | 
| 12 | < | * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | > | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 |  | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  | *    documentation and/or other materials provided with the | 
| 15 |  | *    distribution. | 
| 28 |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  | * such damages. | 
| 31 | + | * | 
| 32 | + | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | + | * research, please cite the appropriate papers when you publish your | 
| 34 | + | * work.  Good starting points are: | 
| 35 | + | * | 
| 36 | + | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | + | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | + | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | + | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | + | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 42 |  |  | 
| 43 |  | /** | 
| 50 |  | #ifndef MATH_QUATERNION_HPP | 
| 51 |  | #define MATH_QUATERNION_HPP | 
| 52 |  |  | 
| 53 | < | #include "math/Vector.hpp" | 
| 53 | > | #include "math/Vector3.hpp" | 
| 54 |  | #include "math/SquareMatrix.hpp" | 
| 55 | + | #define ISZERO(a,eps) ( (a)>-(eps) && (a)<(eps) ) | 
| 56 | + | const RealType tiny=1.0e-6; | 
| 57 |  |  | 
| 58 | < | namespace oopse{ | 
| 58 | > | namespace OpenMD{ | 
| 59 |  |  | 
| 60 |  | /** | 
| 61 |  | * @class Quaternion Quaternion.hpp "math/Quaternion.hpp" | 
| 62 |  | * Quaternion is a sort of a higher-level complex number. | 
| 63 |  | * It is defined as Q = w + x*i + y*j + z*k, | 
| 64 | < | * where w, x, y, and z are numbers of type T (e.g. double), and | 
| 64 | > | * where w, x, y, and z are numbers of type T (e.g. RealType), and | 
| 65 |  | * i*i = -1; j*j = -1; k*k = -1; | 
| 66 |  | * i*j = k; j*k = i; k*i = j; | 
| 67 |  | */ | 
| 68 |  | template<typename Real> | 
| 69 |  | class Quaternion : public Vector<Real, 4> { | 
| 70 | + |  | 
| 71 |  | public: | 
| 72 |  | Quaternion() : Vector<Real, 4>() {} | 
| 73 |  |  | 
| 82 |  | /** Constructs and initializes a Quaternion from a  Vector<Real,4> */ | 
| 83 |  | Quaternion(const Vector<Real,4>& v) | 
| 84 |  | : Vector<Real, 4>(v){ | 
| 85 | < | } | 
| 85 | > | } | 
| 86 |  |  | 
| 87 |  | /** copy assignment */ | 
| 88 |  | Quaternion& operator =(const Vector<Real, 4>& v){ | 
| 89 |  | if (this == & v) | 
| 90 |  | return *this; | 
| 91 | < |  | 
| 91 | > |  | 
| 92 |  | Vector<Real, 4>::operator=(v); | 
| 93 | < |  | 
| 93 | > |  | 
| 94 |  | return *this; | 
| 95 |  | } | 
| 96 | < |  | 
| 96 | > |  | 
| 97 |  | /** | 
| 98 |  | * Returns the value of the first element of this quaternion. | 
| 99 |  | * @return the value of the first element of this quaternion | 
| 246 |  | * Returns the conjugate quaternion of this quaternion | 
| 247 |  | * @return the conjugate quaternion of this quaternion | 
| 248 |  | */ | 
| 249 | < | Quaternion<Real> conjugate() { | 
| 249 | > | Quaternion<Real> conjugate() const { | 
| 250 |  | return Quaternion<Real>(w(), -x(), -y(), -z()); | 
| 251 | + | } | 
| 252 | + |  | 
| 253 | + |  | 
| 254 | + | /** | 
| 255 | + | return rotation angle from -PI to PI | 
| 256 | + | */ | 
| 257 | + | inline Real get_rotation_angle() const{ | 
| 258 | + | if( w() < (Real)0.0 ) | 
| 259 | + | return 2.0*atan2(-sqrt( x()*x() + y()*y() + z()*z() ), -w() ); | 
| 260 | + | else | 
| 261 | + | return 2.0*atan2( sqrt( x()*x() + y()*y() + z()*z() ),  w() ); | 
| 262 | + | } | 
| 263 | + |  | 
| 264 | + | /** | 
| 265 | + | create a unit quaternion from axis angle representation | 
| 266 | + | */ | 
| 267 | + | Quaternion<Real> fromAxisAngle(const Vector3<Real>& axis, | 
| 268 | + | const Real& angle){ | 
| 269 | + | Vector3<Real> v(axis); | 
| 270 | + | v.normalize(); | 
| 271 | + | Real half_angle = angle*0.5; | 
| 272 | + | Real sin_a = sin(half_angle); | 
| 273 | + | *this = Quaternion<Real>(cos(half_angle), | 
| 274 | + | v.x()*sin_a, | 
| 275 | + | v.y()*sin_a, | 
| 276 | + | v.z()*sin_a); | 
| 277 | + | return *this; | 
| 278 | + | } | 
| 279 | + |  | 
| 280 | + | /** | 
| 281 | + | convert a quaternion to axis angle representation, | 
| 282 | + | preserve the axis direction and angle from -PI to +PI | 
| 283 | + | */ | 
| 284 | + | void toAxisAngle(Vector3<Real>& axis, Real& angle)const { | 
| 285 | + | Real vl = sqrt( x()*x() + y()*y() + z()*z() ); | 
| 286 | + | if( vl > tiny ) { | 
| 287 | + | Real ivl = 1.0/vl; | 
| 288 | + | axis.x() = x() * ivl; | 
| 289 | + | axis.y() = y() * ivl; | 
| 290 | + | axis.z() = z() * ivl; | 
| 291 | + |  | 
| 292 | + | if( w() < 0 ) | 
| 293 | + | angle = 2.0*atan2(-vl, -w()); //-PI,0 | 
| 294 | + | else | 
| 295 | + | angle = 2.0*atan2( vl,  w()); //0,PI | 
| 296 | + | } else { | 
| 297 | + | axis = Vector3<Real>(0.0,0.0,0.0); | 
| 298 | + | angle = 0.0; | 
| 299 | + | } | 
| 300 | + | } | 
| 301 | + |  | 
| 302 | + | /** | 
| 303 | + | shortest arc quaternion rotate one vector to another by shortest path. | 
| 304 | + | create rotation from -> to, for any length vectors. | 
| 305 | + | */ | 
| 306 | + | Quaternion<Real> fromShortestArc(const Vector3d& from, | 
| 307 | + | const Vector3d& to ) { | 
| 308 | + |  | 
| 309 | + | Vector3d c( cross(from,to) ); | 
| 310 | + | *this = Quaternion<Real>(dot(from,to), | 
| 311 | + | c.x(), | 
| 312 | + | c.y(), | 
| 313 | + | c.z()); | 
| 314 | + |  | 
| 315 | + | this->normalize();    // if "from" or "to" not unit, normalize quat | 
| 316 | + | w() += 1.0f;            // reducing angle to halfangle | 
| 317 | + | if( w() <= 1e-6 ) {     // angle close to PI | 
| 318 | + | if( ( from.z()*from.z() ) > ( from.x()*from.x() ) ) { | 
| 319 | + | this->data_[0] =  w(); | 
| 320 | + | this->data_[1] =  0.0;       //cross(from , Vector3d(1,0,0)) | 
| 321 | + | this->data_[2] =  from.z(); | 
| 322 | + | this->data_[3] = -from.y(); | 
| 323 | + | } else { | 
| 324 | + | this->data_[0] =  w(); | 
| 325 | + | this->data_[1] =  from.y();  //cross(from, Vector3d(0,0,1)) | 
| 326 | + | this->data_[2] = -from.x(); | 
| 327 | + | this->data_[3] =  0.0; | 
| 328 | + | } | 
| 329 | + | } | 
| 330 | + | this->normalize(); | 
| 331 | + | } | 
| 332 | + |  | 
| 333 | + | Real ComputeTwist(const Quaternion& q) { | 
| 334 | + | return  (Real)2.0 * atan2(q.z(), q.w()); | 
| 335 | + | } | 
| 336 | + |  | 
| 337 | + | void RemoveTwist(Quaternion& q) { | 
| 338 | + | Real t = ComputeTwist(q); | 
| 339 | + | Quaternion rt = fromAxisAngle(V3Z, t); | 
| 340 | + |  | 
| 341 | + | q *= rt.inverse(); | 
| 342 | + | } | 
| 343 | + |  | 
| 344 | + | void getTwistSwingAxisAngle(Real& twistAngle, Real& swingAngle, | 
| 345 | + | Vector3<Real>& swingAxis) { | 
| 346 | + |  | 
| 347 | + | twistAngle = (Real)2.0 * atan2(z(), w()); | 
| 348 | + | Quaternion rt, rs; | 
| 349 | + | rt.fromAxisAngle(V3Z, twistAngle); | 
| 350 | + | rs = *this * rt.inverse(); | 
| 351 | + |  | 
| 352 | + | Real vl = sqrt( rs.x()*rs.x() + rs.y()*rs.y() + rs.z()*rs.z() ); | 
| 353 | + | if( vl > tiny ) { | 
| 354 | + | Real ivl = 1.0 / vl; | 
| 355 | + | swingAxis.x() = rs.x() * ivl; | 
| 356 | + | swingAxis.y() = rs.y() * ivl; | 
| 357 | + | swingAxis.z() = rs.z() * ivl; | 
| 358 | + |  | 
| 359 | + | if( rs.w() < 0.0 ) | 
| 360 | + | swingAngle = 2.0*atan2(-vl, -rs.w()); //-PI,0 | 
| 361 | + | else | 
| 362 | + | swingAngle = 2.0*atan2( vl,  rs.w()); //0,PI | 
| 363 | + | } else { | 
| 364 | + | swingAxis = Vector3<Real>(1.0,0.0,0.0); | 
| 365 | + | swingAngle = 0.0; | 
| 366 | + | } | 
| 367 | + | } | 
| 368 | + |  | 
| 369 | + |  | 
| 370 | + | Vector3<Real> rotate(const Vector3<Real>& v) { | 
| 371 | + |  | 
| 372 | + | Quaternion<Real> q(v.x() * w() + v.z() * y() - v.y() * z(), | 
| 373 | + | v.y() * w() + v.x() * z() - v.z() * x(), | 
| 374 | + | v.z() * w() + v.y() * x() - v.x() * y(), | 
| 375 | + | v.x() * x() + v.y() * y() + v.z() * z()); | 
| 376 | + |  | 
| 377 | + | return Vector3<Real>(w()*q.x() + x()*q.w() + y()*q.z() - z()*q.y(), | 
| 378 | + | w()*q.y() + y()*q.w() + z()*q.x() - x()*q.z(), | 
| 379 | + | w()*q.z() + z()*q.w() + x()*q.y() - y()*q.x())* | 
| 380 | + | ( 1.0/this->lengthSquare() ); | 
| 381 | + | } | 
| 382 | + |  | 
| 383 | + | Quaternion<Real>& align (const Vector3<Real>& V1, | 
| 384 | + | const Vector3<Real>& V2) { | 
| 385 | + |  | 
| 386 | + | // If V1 and V2 are not parallel, the axis of rotation is the unit-length | 
| 387 | + | // vector U = Cross(V1,V2)/Length(Cross(V1,V2)).  The angle of rotation, | 
| 388 | + | // A, is the angle between V1 and V2.  The quaternion for the rotation is | 
| 389 | + | // q = cos(A/2) + sin(A/2)*(ux*i+uy*j+uz*k) where U = (ux,uy,uz). | 
| 390 | + | // | 
| 391 | + | // (1) Rather than extract A = acos(Dot(V1,V2)), multiply by 1/2, then | 
| 392 | + | //     compute sin(A/2) and cos(A/2), we reduce the computational costs | 
| 393 | + | //     by computing the bisector B = (V1+V2)/Length(V1+V2), so cos(A/2) = | 
| 394 | + | //     Dot(V1,B). | 
| 395 | + | // | 
| 396 | + | // (2) The rotation axis is U = Cross(V1,B)/Length(Cross(V1,B)), but | 
| 397 | + | //     Length(Cross(V1,B)) = Length(V1)*Length(B)*sin(A/2) = sin(A/2), in | 
| 398 | + | //     which case sin(A/2)*(ux*i+uy*j+uz*k) = (cx*i+cy*j+cz*k) where | 
| 399 | + | //     C = Cross(V1,B). | 
| 400 | + | // | 
| 401 | + | // If V1 = V2, then B = V1, cos(A/2) = 1, and U = (0,0,0).  If V1 = -V2, | 
| 402 | + | // then B = 0.  This can happen even if V1 is approximately -V2 using | 
| 403 | + | // floating point arithmetic, since Vector3::Normalize checks for | 
| 404 | + | // closeness to zero and returns the zero vector accordingly.  The test | 
| 405 | + | // for exactly zero is usually not recommend for floating point | 
| 406 | + | // arithmetic, but the implementation of Vector3::Normalize guarantees | 
| 407 | + | // the comparison is robust.  In this case, the A = pi and any axis | 
| 408 | + | // perpendicular to V1 may be used as the rotation axis. | 
| 409 | + |  | 
| 410 | + | Vector3<Real> Bisector = V1 + V2; | 
| 411 | + | Bisector.normalize(); | 
| 412 | + |  | 
| 413 | + | Real CosHalfAngle = dot(V1,Bisector); | 
| 414 | + |  | 
| 415 | + | this->data_[0] = CosHalfAngle; | 
| 416 | + |  | 
| 417 | + | if (CosHalfAngle != (Real)0.0) { | 
| 418 | + | Vector3<Real> Cross = cross(V1, Bisector); | 
| 419 | + | this->data_[1] = Cross.x(); | 
| 420 | + | this->data_[2] = Cross.y(); | 
| 421 | + | this->data_[3] = Cross.z(); | 
| 422 | + | } else { | 
| 423 | + | Real InvLength; | 
| 424 | + | if (fabs(V1[0]) >= fabs(V1[1])) { | 
| 425 | + | // V1.x or V1.z is the largest magnitude component | 
| 426 | + | InvLength = (Real)1.0/sqrt(V1[0]*V1[0] + V1[2]*V1[2]); | 
| 427 | + |  | 
| 428 | + | this->data_[1] = -V1[2]*InvLength; | 
| 429 | + | this->data_[2] = (Real)0.0; | 
| 430 | + | this->data_[3] = +V1[0]*InvLength; | 
| 431 | + | } else { | 
| 432 | + | // V1.y or V1.z is the largest magnitude component | 
| 433 | + | InvLength = (Real)1.0 / sqrt(V1[1]*V1[1] + V1[2]*V1[2]); | 
| 434 | + |  | 
| 435 | + | this->data_[1] = (Real)0.0; | 
| 436 | + | this->data_[2] = +V1[2]*InvLength; | 
| 437 | + | this->data_[3] = -V1[1]*InvLength; | 
| 438 | + | } | 
| 439 | + | } | 
| 440 | + | return *this; | 
| 441 |  | } | 
| 442 |  |  | 
| 443 | + | void toTwistSwing ( Real& tw, Real& sx, Real& sy ) { | 
| 444 | + |  | 
| 445 | + | // First test if the swing is in the singularity: | 
| 446 | + |  | 
| 447 | + | if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; return; } | 
| 448 | + |  | 
| 449 | + | // Decompose into twist-swing by solving the equation: | 
| 450 | + | // | 
| 451 | + | //                       Qtwist(t*2) * Qswing(s*2) = q | 
| 452 | + | // | 
| 453 | + | // note: (x,y) is the normalized swing axis (x*x+y*y=1) | 
| 454 | + | // | 
| 455 | + | //          ( Ct 0 0 St ) * ( Cs xSs ySs 0 ) = ( qw qx qy qz ) | 
| 456 | + | //  ( CtCs  xSsCt-yStSs  xStSs+ySsCt  StCs ) = ( qw qx qy qz )      (1) | 
| 457 | + | // From (1): CtCs / StCs = qw/qz => Ct/St = qw/qz => tan(t) = qz/qw (2) | 
| 458 | + | // | 
| 459 | + | // The swing rotation/2 s comes from: | 
| 460 | + | // | 
| 461 | + | // From (1): (CtCs)^2 + (StCs)^2 = qw^2 + qz^2 => | 
| 462 | + | //                                       Cs = sqrt ( qw^2 + qz^2 ) (3) | 
| 463 | + | // | 
| 464 | + | // From (1): (xSsCt-yStSs)^2 + (xStSs+ySsCt)^2 = qx^2 + qy^2 => | 
| 465 | + | //                                       Ss = sqrt ( qx^2 + qy^2 ) (4) | 
| 466 | + | // From (1):  |SsCt -StSs| |x| = |qx| | 
| 467 | + | //            |StSs +SsCt| |y|   |qy|                              (5) | 
| 468 | + |  | 
| 469 | + | Real qw, qx, qy, qz; | 
| 470 | + |  | 
| 471 | + | if ( w()<0 ) { | 
| 472 | + | qw=-w(); | 
| 473 | + | qx=-x(); | 
| 474 | + | qy=-y(); | 
| 475 | + | qz=-z(); | 
| 476 | + | } else { | 
| 477 | + | qw=w(); | 
| 478 | + | qx=x(); | 
| 479 | + | qy=y(); | 
| 480 | + | qz=z(); | 
| 481 | + | } | 
| 482 | + |  | 
| 483 | + | Real t = atan2 ( qz, qw ); // from (2) | 
| 484 | + | Real s = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) ); // from (3) | 
| 485 | + | // and (4) | 
| 486 | + |  | 
| 487 | + | Real x=0.0, y=0.0, sins=sin(s); | 
| 488 | + |  | 
| 489 | + | if ( !ISZERO(sins,tiny) ) { | 
| 490 | + | Real sint = sin(t); | 
| 491 | + | Real cost = cos(t); | 
| 492 | + |  | 
| 493 | + | // by solving the linear system in (5): | 
| 494 | + | y = (-qx*sint + qy*cost)/sins; | 
| 495 | + | x = ( qx*cost + qy*sint)/sins; | 
| 496 | + | } | 
| 497 | + |  | 
| 498 | + | tw = (Real)2.0*t; | 
| 499 | + | sx = (Real)2.0*x*s; | 
| 500 | + | sy = (Real)2.0*y*s; | 
| 501 | + | } | 
| 502 | + |  | 
| 503 | + | void toSwingTwist(Real& sx, Real& sy, Real& tw ) { | 
| 504 | + |  | 
| 505 | + | // Decompose q into swing-twist using a similar development as | 
| 506 | + | // in function toTwistSwing | 
| 507 | + |  | 
| 508 | + | if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; } | 
| 509 | + |  | 
| 510 | + | Real qw, qx, qy, qz; | 
| 511 | + | if ( w() < 0 ){ | 
| 512 | + | qw=-w(); | 
| 513 | + | qx=-x(); | 
| 514 | + | qy=-y(); | 
| 515 | + | qz=-z(); | 
| 516 | + | } else { | 
| 517 | + | qw=w(); | 
| 518 | + | qx=x(); | 
| 519 | + | qy=y(); | 
| 520 | + | qz=z(); | 
| 521 | + | } | 
| 522 | + |  | 
| 523 | + | // Get the twist t: | 
| 524 | + | Real t = 2.0 * atan2(qz,qw); | 
| 525 | + |  | 
| 526 | + | Real bet = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) ); | 
| 527 | + | Real gam = t/2.0; | 
| 528 | + | Real sinc = ISZERO(bet,tiny)? 1.0 : sin(bet)/bet; | 
| 529 | + | Real singam = sin(gam); | 
| 530 | + | Real cosgam = cos(gam); | 
| 531 | + |  | 
| 532 | + | sx = Real( (2.0/sinc) * (cosgam*qx - singam*qy) ); | 
| 533 | + | sy = Real( (2.0/sinc) * (singam*qx + cosgam*qy) ); | 
| 534 | + | tw = Real( t ); | 
| 535 | + | } | 
| 536 | + |  | 
| 537 | + |  | 
| 538 | + |  | 
| 539 |  | /** | 
| 540 |  | * Returns the corresponding rotation matrix (3x3) | 
| 541 |  | * @return a 3x3 rotation matrix | 
| 542 |  | */ | 
| 543 |  | SquareMatrix<Real, 3> toRotationMatrix3() { | 
| 544 |  | SquareMatrix<Real, 3> rotMat3; | 
| 545 | < |  | 
| 545 | > |  | 
| 546 |  | Real w2; | 
| 547 |  | Real x2; | 
| 548 |  | Real y2; | 
| 645 |  | return equal(lhs[0] ,rhs[0]) && equal(lhs[1] , rhs[1]) && equal(lhs[2], rhs[2]) && equal(lhs[3], rhs[3]); | 
| 646 |  | } | 
| 647 |  |  | 
| 648 | < | typedef Quaternion<double> Quat4d; | 
| 648 | > | typedef Quaternion<RealType> Quat4d; | 
| 649 |  | } | 
| 650 |  | #endif //MATH_QUATERNION_HPP |