| 1 |  | /* | 
| 2 | < | * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project | 
| 3 | < | * | 
| 4 | < | * Contact: oopse@oopse.org | 
| 5 | < | * | 
| 6 | < | * This program is free software; you can redistribute it and/or | 
| 7 | < | * modify it under the terms of the GNU Lesser General Public License | 
| 8 | < | * as published by the Free Software Foundation; either version 2.1 | 
| 9 | < | * of the License, or (at your option) any later version. | 
| 10 | < | * All we ask is that proper credit is given for our work, which includes | 
| 11 | < | * - but is not limited to - adding the above copyright notice to the beginning | 
| 12 | < | * of your source code files, and to any copyright notice that you may distribute | 
| 13 | < | * with programs based on this work. | 
| 14 | < | * | 
| 15 | < | * This program is distributed in the hope that it will be useful, | 
| 16 | < | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 17 | < | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 18 | < | * GNU Lesser General Public License for more details. | 
| 19 | < | * | 
| 20 | < | * You should have received a copy of the GNU Lesser General Public License | 
| 21 | < | * along with this program; if not, write to the Free Software | 
| 22 | < | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA. | 
| 2 | > | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 |  | * | 
| 4 | + | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | + | * non-exclusive, royalty free, license to use, modify and | 
| 6 | + | * redistribute this software in source and binary code form, provided | 
| 7 | + | * that the following conditions are met: | 
| 8 | + | * | 
| 9 | + | * 1. Redistributions of source code must retain the above copyright | 
| 10 | + | *    notice, this list of conditions and the following disclaimer. | 
| 11 | + | * | 
| 12 | + | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | + | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | + | *    documentation and/or other materials provided with the | 
| 15 | + | *    distribution. | 
| 16 | + | * | 
| 17 | + | * This software is provided "AS IS," without a warranty of any | 
| 18 | + | * kind. All express or implied conditions, representations and | 
| 19 | + | * warranties, including any implied warranty of merchantability, | 
| 20 | + | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | + | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | + | * be liable for any damages suffered by licensee as a result of | 
| 23 | + | * using, modifying or distributing the software or its | 
| 24 | + | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | + | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | + | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | + | * damages, however caused and regardless of the theory of liability, | 
| 28 | + | * arising out of the use of or inability to use software, even if the | 
| 29 | + | * University of Notre Dame has been advised of the possibility of | 
| 30 | + | * such damages. | 
| 31 | + | * | 
| 32 | + | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | + | * research, please cite the appropriate papers when you publish your | 
| 34 | + | * work.  Good starting points are: | 
| 35 | + | * | 
| 36 | + | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | + | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | + | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | + | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | + | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 42 | < |  | 
| 42 | > |  | 
| 43 |  | /** | 
| 44 |  | * @file Quaternion.hpp | 
| 45 |  | * @author Teng Lin | 
| 50 |  | #ifndef MATH_QUATERNION_HPP | 
| 51 |  | #define MATH_QUATERNION_HPP | 
| 52 |  |  | 
| 53 | < | #include "math/Vector.hpp" | 
| 53 | > | #include "math/Vector3.hpp" | 
| 54 | > | #include "math/SquareMatrix.hpp" | 
| 55 | > | #define ISZERO(a,eps) ( (a)>-(eps) && (a)<(eps) ) | 
| 56 | > | const RealType tiny=1.0e-6; | 
| 57 |  |  | 
| 58 | < | namespace oopse{ | 
| 58 | > | namespace OpenMD{ | 
| 59 |  |  | 
| 60 | < | /** | 
| 61 | < | * @class Quaternion Quaternion.hpp "math/Quaternion.hpp" | 
| 62 | < | * Quaternion is a sort of a higher-level complex number. | 
| 63 | < | * It is defined as Q = w + x*i + y*j + z*k, | 
| 64 | < | * where w, x, y, and z are numbers of type T (e.g. double), and | 
| 65 | < | * i*i = -1; j*j = -1; k*k = -1; | 
| 66 | < | * i*j = k; j*k = i; k*i = j; | 
| 67 | < | */ | 
| 68 | < | template<typename Real> | 
| 69 | < | class Quaternion : public Vector<Real, 4> { | 
| 50 | < | public: | 
| 51 | < | Quaternion(); | 
| 60 | > | /** | 
| 61 | > | * @class Quaternion Quaternion.hpp "math/Quaternion.hpp" | 
| 62 | > | * Quaternion is a sort of a higher-level complex number. | 
| 63 | > | * It is defined as Q = w + x*i + y*j + z*k, | 
| 64 | > | * where w, x, y, and z are numbers of type T (e.g. RealType), and | 
| 65 | > | * i*i = -1; j*j = -1; k*k = -1; | 
| 66 | > | * i*j = k; j*k = i; k*i = j; | 
| 67 | > | */ | 
| 68 | > | template<typename Real> | 
| 69 | > | class Quaternion : public Vector<Real, 4> { | 
| 70 |  |  | 
| 71 | < | /** Constructs and initializes a Quaternion from w, x, y, z values */ | 
| 72 | < | Quaternion(Real w, Real x, Real y, Real z) { | 
| 73 | < | data_[0] = w; | 
| 74 | < | data_[1] = x; | 
| 75 | < | data_[2] = y; | 
| 76 | < | data_[3] = z; | 
| 77 | < | } | 
| 71 | > | public: | 
| 72 | > | Quaternion() : Vector<Real, 4>() {} | 
| 73 | > |  | 
| 74 | > | /** Constructs and initializes a Quaternion from w, x, y, z values */ | 
| 75 | > | Quaternion(Real w, Real x, Real y, Real z) { | 
| 76 | > | this->data_[0] = w; | 
| 77 | > | this->data_[1] = x; | 
| 78 | > | this->data_[2] = y; | 
| 79 | > | this->data_[3] = z; | 
| 80 | > | } | 
| 81 |  |  | 
| 82 | < | /** | 
| 83 | < | * | 
| 84 | < | */ | 
| 85 | < | Quaternion(const Vector<Real,4>& v) | 
| 65 | < | : Vector<Real, 4>(v){ | 
| 66 | < | } | 
| 82 | > | /** Constructs and initializes a Quaternion from a  Vector<Real,4> */ | 
| 83 | > | Quaternion(const Vector<Real,4>& v) | 
| 84 | > | : Vector<Real, 4>(v){ | 
| 85 | > | } | 
| 86 |  |  | 
| 87 | < | /** */ | 
| 88 | < | Quaternion& operator =(const Vector<Real, 4>& v){ | 
| 89 | < | if (this == & v) | 
| 90 | < | return *this; | 
| 87 | > | /** copy assignment */ | 
| 88 | > | Quaternion& operator =(const Vector<Real, 4>& v){ | 
| 89 | > | if (this == & v) | 
| 90 | > | return *this; | 
| 91 | > |  | 
| 92 | > | Vector<Real, 4>::operator=(v); | 
| 93 | > |  | 
| 94 | > | return *this; | 
| 95 | > | } | 
| 96 | > |  | 
| 97 | > | /** | 
| 98 | > | * Returns the value of the first element of this quaternion. | 
| 99 | > | * @return the value of the first element of this quaternion | 
| 100 | > | */ | 
| 101 | > | Real w() const { | 
| 102 | > | return this->data_[0]; | 
| 103 | > | } | 
| 104 |  |  | 
| 105 | < | Vector<Real, 4>::operator=(v); | 
| 106 | < |  | 
| 107 | < | return *this; | 
| 108 | < | } | 
| 105 | > | /** | 
| 106 | > | * Returns the reference of the first element of this quaternion. | 
| 107 | > | * @return the reference of the first element of this quaternion | 
| 108 | > | */ | 
| 109 | > | Real& w() { | 
| 110 | > | return this->data_[0]; | 
| 111 | > | } | 
| 112 |  |  | 
| 113 | < | /** | 
| 114 | < | * Returns the value of the first element of this quaternion. | 
| 115 | < | * @return the value of the first element of this quaternion | 
| 116 | < | */ | 
| 117 | < | Real w() const { | 
| 118 | < | return data_[0]; | 
| 119 | < | } | 
| 113 | > | /** | 
| 114 | > | * Returns the value of the first element of this quaternion. | 
| 115 | > | * @return the value of the first element of this quaternion | 
| 116 | > | */ | 
| 117 | > | Real x() const { | 
| 118 | > | return this->data_[1]; | 
| 119 | > | } | 
| 120 |  |  | 
| 121 | < | /** | 
| 122 | < | * Returns the reference of the first element of this quaternion. | 
| 123 | < | * @return the reference of the first element of this quaternion | 
| 124 | < | */ | 
| 125 | < | Real& w() { | 
| 126 | < | return data_[0]; | 
| 127 | < | } | 
| 121 | > | /** | 
| 122 | > | * Returns the reference of the second element of this quaternion. | 
| 123 | > | * @return the reference of the second element of this quaternion | 
| 124 | > | */ | 
| 125 | > | Real& x() { | 
| 126 | > | return this->data_[1]; | 
| 127 | > | } | 
| 128 |  |  | 
| 129 | < | /** | 
| 130 | < | * Returns the value of the first element of this quaternion. | 
| 131 | < | * @return the value of the first element of this quaternion | 
| 132 | < | */ | 
| 133 | < | Real x() const { | 
| 134 | < | return data_[1]; | 
| 135 | < | } | 
| 129 | > | /** | 
| 130 | > | * Returns the value of the thirf element of this quaternion. | 
| 131 | > | * @return the value of the third element of this quaternion | 
| 132 | > | */ | 
| 133 | > | Real y() const { | 
| 134 | > | return this->data_[2]; | 
| 135 | > | } | 
| 136 |  |  | 
| 137 | < | /** | 
| 138 | < | * Returns the reference of the second element of this quaternion. | 
| 139 | < | * @return the reference of the second element of this quaternion | 
| 140 | < | */ | 
| 141 | < | Real& x() { | 
| 142 | < | return data_[1]; | 
| 143 | < | } | 
| 137 | > | /** | 
| 138 | > | * Returns the reference of the third element of this quaternion. | 
| 139 | > | * @return the reference of the third element of this quaternion | 
| 140 | > | */ | 
| 141 | > | Real& y() { | 
| 142 | > | return this->data_[2]; | 
| 143 | > | } | 
| 144 |  |  | 
| 145 | < | /** | 
| 146 | < | * Returns the value of the thirf element of this quaternion. | 
| 147 | < | * @return the value of the third element of this quaternion | 
| 148 | < | */ | 
| 149 | < | Real y() const { | 
| 150 | < | return data_[2]; | 
| 151 | < | } | 
| 145 | > | /** | 
| 146 | > | * Returns the value of the fourth element of this quaternion. | 
| 147 | > | * @return the value of the fourth element of this quaternion | 
| 148 | > | */ | 
| 149 | > | Real z() const { | 
| 150 | > | return this->data_[3]; | 
| 151 | > | } | 
| 152 | > | /** | 
| 153 | > | * Returns the reference of the fourth element of this quaternion. | 
| 154 | > | * @return the reference of the fourth element of this quaternion | 
| 155 | > | */ | 
| 156 | > | Real& z() { | 
| 157 | > | return this->data_[3]; | 
| 158 | > | } | 
| 159 |  |  | 
| 160 | < | /** | 
| 161 | < | * Returns the reference of the third element of this quaternion. | 
| 162 | < | * @return the reference of the third element of this quaternion | 
| 163 | < | */ | 
| 164 | < | Real& y() { | 
| 165 | < | return data_[2]; | 
| 124 | < | } | 
| 160 | > | /** | 
| 161 | > | * Tests if this quaternion is equal to other quaternion | 
| 162 | > | * @return true if equal, otherwise return false | 
| 163 | > | * @param q quaternion to be compared | 
| 164 | > | */ | 
| 165 | > | inline bool operator ==(const Quaternion<Real>& q) { | 
| 166 |  |  | 
| 167 | < | /** | 
| 168 | < | * Returns the value of the fourth element of this quaternion. | 
| 169 | < | * @return the value of the fourth element of this quaternion | 
| 170 | < | */ | 
| 171 | < | Real z() const { | 
| 131 | < | return data_[3]; | 
| 132 | < | } | 
| 133 | < | /** | 
| 134 | < | * Returns the reference of the fourth element of this quaternion. | 
| 135 | < | * @return the reference of the fourth element of this quaternion | 
| 136 | < | */ | 
| 137 | < | Real& z() { | 
| 138 | < | return data_[3]; | 
| 139 | < | } | 
| 140 | < |  | 
| 141 | < | /** | 
| 142 | < | * Returns the inverse of this quaternion | 
| 143 | < | * @return inverse | 
| 144 | < | * @note since quaternion is a complex number, the inverse of quaternion | 
| 145 | < | * q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2) | 
| 146 | < | */ | 
| 147 | < | Quaternion<Real> inverse(){ | 
| 148 | < | Quaternion<Real> q; | 
| 149 | < | Real d = this->lengthSquared(); | 
| 167 | > | for (unsigned int i = 0; i < 4; i ++) { | 
| 168 | > | if (!equal(this->data_[i], q[i])) { | 
| 169 | > | return false; | 
| 170 | > | } | 
| 171 | > | } | 
| 172 |  |  | 
| 173 | < | q.w() = w() / d; | 
| 174 | < | q.x() = -x() / d; | 
| 175 | < | q.y() = -y() / d; | 
| 176 | < | q.z() = -z() / d; | 
| 173 | > | return true; | 
| 174 | > | } | 
| 175 | > |  | 
| 176 | > | /** | 
| 177 | > | * Returns the inverse of this quaternion | 
| 178 | > | * @return inverse | 
| 179 | > | * @note since quaternion is a complex number, the inverse of quaternion | 
| 180 | > | * q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2) | 
| 181 | > | */ | 
| 182 | > | Quaternion<Real> inverse() { | 
| 183 | > | Quaternion<Real> q; | 
| 184 | > | Real d = this->lengthSquare(); | 
| 185 |  |  | 
| 186 | < | return q; | 
| 187 | < | } | 
| 186 | > | q.w() = w() / d; | 
| 187 | > | q.x() = -x() / d; | 
| 188 | > | q.y() = -y() / d; | 
| 189 | > | q.z() = -z() / d; | 
| 190 | > |  | 
| 191 | > | return q; | 
| 192 | > | } | 
| 193 |  |  | 
| 194 | < | /** | 
| 195 | < | * Sets the value to the multiplication of itself and another quaternion | 
| 196 | < | * @param q the other quaternion | 
| 197 | < | */ | 
| 198 | < | void mul(const Quaternion<Real>& q) { | 
| 194 | > | /** | 
| 195 | > | * Sets the value to the multiplication of itself and another quaternion | 
| 196 | > | * @param q the other quaternion | 
| 197 | > | */ | 
| 198 | > | void mul(const Quaternion<Real>& q) { | 
| 199 | > | Quaternion<Real> tmp(*this); | 
| 200 |  |  | 
| 201 | < | Real a0( (z() - y()) * (q.y() - q.z()) ); | 
| 202 | < | Real a1( (w() + x()) * (q.w() + q.x()) ); | 
| 203 | < | Real a2( (w() - x()) * (q.y() + q.z()) ); | 
| 204 | < | Real a3( (y() + z()) * (q.w() - q.x()) ); | 
| 205 | < | Real b0( -(x() - z()) * (q.x() - q.y()) ); | 
| 170 | < | Real b1( -(x() + z()) * (q.x() + q.y()) ); | 
| 171 | < | Real b2( (w() + y()) * (q.w() - q.z()) ); | 
| 172 | < | Real b3( (w() - y()) * (q.w() + q.z()) ); | 
| 201 | > | this->data_[0] = (tmp[0]*q[0]) -(tmp[1]*q[1]) - (tmp[2]*q[2]) - (tmp[3]*q[3]); | 
| 202 | > | this->data_[1] = (tmp[0]*q[1]) + (tmp[1]*q[0]) + (tmp[2]*q[3]) - (tmp[3]*q[2]); | 
| 203 | > | this->data_[2] = (tmp[0]*q[2]) + (tmp[2]*q[0]) + (tmp[3]*q[1]) - (tmp[1]*q[3]); | 
| 204 | > | this->data_[3] = (tmp[0]*q[3]) + (tmp[3]*q[0]) + (tmp[1]*q[2]) - (tmp[2]*q[1]); | 
| 205 | > | } | 
| 206 |  |  | 
| 207 | < | data_[0] = a0 + 0.5*(b0 + b1 + b2 + b3),; | 
| 208 | < | data_[1] = a1 + 0.5*(b0 + b1 - b2 - b3); | 
| 209 | < | data_[2] = a2 + 0.5*(b0 - b1 + b2 - b3), | 
| 210 | < | data_[3] = a3 + 0.5*(b0 - b1 - b2 + b3) ); | 
| 211 | < | } | 
| 207 | > | void mul(const Real& s) { | 
| 208 | > | this->data_[0] *= s; | 
| 209 | > | this->data_[1] *= s; | 
| 210 | > | this->data_[2] *= s; | 
| 211 | > | this->data_[3] *= s; | 
| 212 | > | } | 
| 213 |  |  | 
| 214 | + | /** Set the value of this quaternion to the division of itself by another quaternion */ | 
| 215 | + | void div(Quaternion<Real>& q) { | 
| 216 | + | mul(q.inverse()); | 
| 217 | + | } | 
| 218 |  |  | 
| 219 | < | /** Set the value of this quaternion to the division of itself by another quaternion */ | 
| 220 | < | void div(const Quaternion<Real>& q) { | 
| 221 | < | mul(q.inverse()); | 
| 222 | < | } | 
| 219 | > | void div(const Real& s) { | 
| 220 | > | this->data_[0] /= s; | 
| 221 | > | this->data_[1] /= s; | 
| 222 | > | this->data_[2] /= s; | 
| 223 | > | this->data_[3] /= s; | 
| 224 | > | } | 
| 225 |  |  | 
| 226 | < | Quaternion<Real>& operator *=(const Quaternion<Real>& q) { | 
| 227 | < | mul(q); | 
| 228 | < | return *this; | 
| 229 | < | } | 
| 230 | < |  | 
| 231 | < | Quaternion<Real>& operator /=(const Quaternion<Real>& q) { | 
| 232 | < | mul(q.inverse()); | 
| 233 | < | return *this; | 
| 234 | < | } | 
| 226 | > | Quaternion<Real>& operator *=(const Quaternion<Real>& q) { | 
| 227 | > | mul(q); | 
| 228 | > | return *this; | 
| 229 | > | } | 
| 230 | > |  | 
| 231 | > | Quaternion<Real>& operator *=(const Real& s) { | 
| 232 | > | mul(s); | 
| 233 | > | return *this; | 
| 234 | > | } | 
| 235 |  |  | 
| 236 | < | /** | 
| 237 | < | * Returns the conjugate quaternion of this quaternion | 
| 238 | < | * @return the conjugate quaternion of this quaternion | 
| 239 | < | */ | 
| 200 | < | Quaternion<Real> conjugate() { | 
| 201 | < | return Quaternion<Real>(w(), -x(), -y(), -z()); | 
| 202 | < | } | 
| 236 | > | Quaternion<Real>& operator /=(Quaternion<Real>& q) { | 
| 237 | > | *this *= q.inverse(); | 
| 238 | > | return *this; | 
| 239 | > | } | 
| 240 |  |  | 
| 241 | < | /** | 
| 242 | < | * Returns the corresponding rotation matrix (3x3) | 
| 243 | < | * @return a 3x3 rotation matrix | 
| 244 | < | */ | 
| 245 | < | SquareMatrix<Real, 3> toRotationMatrix3() { | 
| 246 | < | SquareMatrix<Real, 3> rotMat3; | 
| 241 | > | Quaternion<Real>& operator /=(const Real& s) { | 
| 242 | > | div(s); | 
| 243 | > | return *this; | 
| 244 | > | } | 
| 245 | > | /** | 
| 246 | > | * Returns the conjugate quaternion of this quaternion | 
| 247 | > | * @return the conjugate quaternion of this quaternion | 
| 248 | > | */ | 
| 249 | > | Quaternion<Real> conjugate() const { | 
| 250 | > | return Quaternion<Real>(w(), -x(), -y(), -z()); | 
| 251 | > | } | 
| 252 |  |  | 
| 211 | – | Real w2; | 
| 212 | – | Real x2; | 
| 213 | – | Real y2; | 
| 214 | – | Real z2; | 
| 253 |  |  | 
| 254 | < | if (!isNormalized()) | 
| 255 | < | normalize(); | 
| 256 | < |  | 
| 257 | < | w2 = w() * w(); | 
| 258 | < | x2 = x() * x(); | 
| 259 | < | y2 = y() * y(); | 
| 260 | < | z2 = z() * z(); | 
| 254 | > | /** | 
| 255 | > | return rotation angle from -PI to PI | 
| 256 | > | */ | 
| 257 | > | inline Real get_rotation_angle() const{ | 
| 258 | > | if( w() < (Real)0.0 ) | 
| 259 | > | return 2.0*atan2(-sqrt( x()*x() + y()*y() + z()*z() ), -w() ); | 
| 260 | > | else | 
| 261 | > | return 2.0*atan2( sqrt( x()*x() + y()*y() + z()*z() ),  w() ); | 
| 262 | > | } | 
| 263 |  |  | 
| 264 | < | rotMat3(0, 0) = w2 + x2 - y2 - z2; | 
| 265 | < | rotMat3(0, 1) = 2.0 * ( x() * y() + w() * z() ); | 
| 266 | < | rotMat3(0, 2) = 2.0 * ( x() * z() - w() * y() ); | 
| 267 | < |  | 
| 268 | < | rotMat3(1, 0) = 2.0 * ( x() * y() - w() * z() ); | 
| 269 | < | rotMat3(1, 1) = w2 - x2 + y2 - z2; | 
| 270 | < | rotMat3(1, 2) = 2.0 * ( y() * z() + w() * x() ); | 
| 264 | > | /** | 
| 265 | > | create a unit quaternion from axis angle representation | 
| 266 | > | */ | 
| 267 | > | Quaternion<Real> fromAxisAngle(const Vector3<Real>& axis, | 
| 268 | > | const Real& angle){ | 
| 269 | > | Vector3<Real> v(axis); | 
| 270 | > | v.normalize(); | 
| 271 | > | Real half_angle = angle*0.5; | 
| 272 | > | Real sin_a = sin(half_angle); | 
| 273 | > | *this = Quaternion<Real>(cos(half_angle), | 
| 274 | > | v.x()*sin_a, | 
| 275 | > | v.y()*sin_a, | 
| 276 | > | v.z()*sin_a); | 
| 277 | > | return *this; | 
| 278 | > | } | 
| 279 | > |  | 
| 280 | > | /** | 
| 281 | > | convert a quaternion to axis angle representation, | 
| 282 | > | preserve the axis direction and angle from -PI to +PI | 
| 283 | > | */ | 
| 284 | > | void toAxisAngle(Vector3<Real>& axis, Real& angle)const { | 
| 285 | > | Real vl = sqrt( x()*x() + y()*y() + z()*z() ); | 
| 286 | > | if( vl > tiny ) { | 
| 287 | > | Real ivl = 1.0/vl; | 
| 288 | > | axis.x() = x() * ivl; | 
| 289 | > | axis.y() = y() * ivl; | 
| 290 | > | axis.z() = z() * ivl; | 
| 291 |  |  | 
| 292 | < | rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() ); | 
| 293 | < | rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() ); | 
| 294 | < | rotMat3(2, 2) = w2 - x2 -y2 +z2; | 
| 295 | < | } | 
| 292 | > | if( w() < 0 ) | 
| 293 | > | angle = 2.0*atan2(-vl, -w()); //-PI,0 | 
| 294 | > | else | 
| 295 | > | angle = 2.0*atan2( vl,  w()); //0,PI | 
| 296 | > | } else { | 
| 297 | > | axis = Vector3<Real>(0.0,0.0,0.0); | 
| 298 | > | angle = 0.0; | 
| 299 | > | } | 
| 300 | > | } | 
| 301 |  |  | 
| 237 | – | };//end Quaternion | 
| 238 | – |  | 
| 302 |  | /** | 
| 303 | < | * Returns the multiplication of two quaternion | 
| 304 | < | * @return the multiplication of two quaternion | 
| 305 | < | * @param q1 the first quaternion | 
| 306 | < | * @param q2 the second quaternion | 
| 307 | < | */ | 
| 308 | < | template<typename Real> | 
| 309 | < | inline Quaternion<Real> operator *(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { | 
| 310 | < | Quaternion<Real> result(q1); | 
| 311 | < | result *= q2; | 
| 312 | < | return result; | 
| 303 | > | shortest arc quaternion rotate one vector to another by shortest path. | 
| 304 | > | create rotation from -> to, for any length vectors. | 
| 305 | > | */ | 
| 306 | > | Quaternion<Real> fromShortestArc(const Vector3d& from, | 
| 307 | > | const Vector3d& to ) { | 
| 308 | > |  | 
| 309 | > | Vector3d c( cross(from,to) ); | 
| 310 | > | *this = Quaternion<Real>(dot(from,to), | 
| 311 | > | c.x(), | 
| 312 | > | c.y(), | 
| 313 | > | c.z()); | 
| 314 | > |  | 
| 315 | > | this->normalize();    // if "from" or "to" not unit, normalize quat | 
| 316 | > | w() += 1.0f;            // reducing angle to halfangle | 
| 317 | > | if( w() <= 1e-6 ) {     // angle close to PI | 
| 318 | > | if( ( from.z()*from.z() ) > ( from.x()*from.x() ) ) { | 
| 319 | > | this->data_[0] =  w(); | 
| 320 | > | this->data_[1] =  0.0;       //cross(from , Vector3d(1,0,0)) | 
| 321 | > | this->data_[2] =  from.z(); | 
| 322 | > | this->data_[3] = -from.y(); | 
| 323 | > | } else { | 
| 324 | > | this->data_[0] =  w(); | 
| 325 | > | this->data_[1] =  from.y();  //cross(from, Vector3d(0,0,1)) | 
| 326 | > | this->data_[2] = -from.x(); | 
| 327 | > | this->data_[3] =  0.0; | 
| 328 | > | } | 
| 329 | > | } | 
| 330 | > | this->normalize(); | 
| 331 |  | } | 
| 332 |  |  | 
| 333 | + | Real ComputeTwist(const Quaternion& q) { | 
| 334 | + | return  (Real)2.0 * atan2(q.z(), q.w()); | 
| 335 | + | } | 
| 336 | + |  | 
| 337 | + | void RemoveTwist(Quaternion& q) { | 
| 338 | + | Real t = ComputeTwist(q); | 
| 339 | + | Quaternion rt = fromAxisAngle(V3Z, t); | 
| 340 | + |  | 
| 341 | + | q *= rt.inverse(); | 
| 342 | + | } | 
| 343 | + |  | 
| 344 | + | void getTwistSwingAxisAngle(Real& twistAngle, Real& swingAngle, | 
| 345 | + | Vector3<Real>& swingAxis) { | 
| 346 | + |  | 
| 347 | + | twistAngle = (Real)2.0 * atan2(z(), w()); | 
| 348 | + | Quaternion rt, rs; | 
| 349 | + | rt.fromAxisAngle(V3Z, twistAngle); | 
| 350 | + | rs = *this * rt.inverse(); | 
| 351 | + |  | 
| 352 | + | Real vl = sqrt( rs.x()*rs.x() + rs.y()*rs.y() + rs.z()*rs.z() ); | 
| 353 | + | if( vl > tiny ) { | 
| 354 | + | Real ivl = 1.0 / vl; | 
| 355 | + | swingAxis.x() = rs.x() * ivl; | 
| 356 | + | swingAxis.y() = rs.y() * ivl; | 
| 357 | + | swingAxis.z() = rs.z() * ivl; | 
| 358 | + |  | 
| 359 | + | if( rs.w() < 0.0 ) | 
| 360 | + | swingAngle = 2.0*atan2(-vl, -rs.w()); //-PI,0 | 
| 361 | + | else | 
| 362 | + | swingAngle = 2.0*atan2( vl,  rs.w()); //0,PI | 
| 363 | + | } else { | 
| 364 | + | swingAxis = Vector3<Real>(1.0,0.0,0.0); | 
| 365 | + | swingAngle = 0.0; | 
| 366 | + | } | 
| 367 | + | } | 
| 368 | + |  | 
| 369 | + |  | 
| 370 | + | Vector3<Real> rotate(const Vector3<Real>& v) { | 
| 371 | + |  | 
| 372 | + | Quaternion<Real> q(v.x() * w() + v.z() * y() - v.y() * z(), | 
| 373 | + | v.y() * w() + v.x() * z() - v.z() * x(), | 
| 374 | + | v.z() * w() + v.y() * x() - v.x() * y(), | 
| 375 | + | v.x() * x() + v.y() * y() + v.z() * z()); | 
| 376 | + |  | 
| 377 | + | return Vector3<Real>(w()*q.x() + x()*q.w() + y()*q.z() - z()*q.y(), | 
| 378 | + | w()*q.y() + y()*q.w() + z()*q.x() - x()*q.z(), | 
| 379 | + | w()*q.z() + z()*q.w() + x()*q.y() - y()*q.x())* | 
| 380 | + | ( 1.0/this->lengthSquare() ); | 
| 381 | + | } | 
| 382 | + |  | 
| 383 | + | Quaternion<Real>& align (const Vector3<Real>& V1, | 
| 384 | + | const Vector3<Real>& V2) { | 
| 385 | + |  | 
| 386 | + | // If V1 and V2 are not parallel, the axis of rotation is the unit-length | 
| 387 | + | // vector U = Cross(V1,V2)/Length(Cross(V1,V2)).  The angle of rotation, | 
| 388 | + | // A, is the angle between V1 and V2.  The quaternion for the rotation is | 
| 389 | + | // q = cos(A/2) + sin(A/2)*(ux*i+uy*j+uz*k) where U = (ux,uy,uz). | 
| 390 | + | // | 
| 391 | + | // (1) Rather than extract A = acos(Dot(V1,V2)), multiply by 1/2, then | 
| 392 | + | //     compute sin(A/2) and cos(A/2), we reduce the computational costs | 
| 393 | + | //     by computing the bisector B = (V1+V2)/Length(V1+V2), so cos(A/2) = | 
| 394 | + | //     Dot(V1,B). | 
| 395 | + | // | 
| 396 | + | // (2) The rotation axis is U = Cross(V1,B)/Length(Cross(V1,B)), but | 
| 397 | + | //     Length(Cross(V1,B)) = Length(V1)*Length(B)*sin(A/2) = sin(A/2), in | 
| 398 | + | //     which case sin(A/2)*(ux*i+uy*j+uz*k) = (cx*i+cy*j+cz*k) where | 
| 399 | + | //     C = Cross(V1,B). | 
| 400 | + | // | 
| 401 | + | // If V1 = V2, then B = V1, cos(A/2) = 1, and U = (0,0,0).  If V1 = -V2, | 
| 402 | + | // then B = 0.  This can happen even if V1 is approximately -V2 using | 
| 403 | + | // floating point arithmetic, since Vector3::Normalize checks for | 
| 404 | + | // closeness to zero and returns the zero vector accordingly.  The test | 
| 405 | + | // for exactly zero is usually not recommend for floating point | 
| 406 | + | // arithmetic, but the implementation of Vector3::Normalize guarantees | 
| 407 | + | // the comparison is robust.  In this case, the A = pi and any axis | 
| 408 | + | // perpendicular to V1 may be used as the rotation axis. | 
| 409 | + |  | 
| 410 | + | Vector3<Real> Bisector = V1 + V2; | 
| 411 | + | Bisector.normalize(); | 
| 412 | + |  | 
| 413 | + | Real CosHalfAngle = dot(V1,Bisector); | 
| 414 | + |  | 
| 415 | + | this->data_[0] = CosHalfAngle; | 
| 416 | + |  | 
| 417 | + | if (CosHalfAngle != (Real)0.0) { | 
| 418 | + | Vector3<Real> Cross = cross(V1, Bisector); | 
| 419 | + | this->data_[1] = Cross.x(); | 
| 420 | + | this->data_[2] = Cross.y(); | 
| 421 | + | this->data_[3] = Cross.z(); | 
| 422 | + | } else { | 
| 423 | + | Real InvLength; | 
| 424 | + | if (fabs(V1[0]) >= fabs(V1[1])) { | 
| 425 | + | // V1.x or V1.z is the largest magnitude component | 
| 426 | + | InvLength = (Real)1.0/sqrt(V1[0]*V1[0] + V1[2]*V1[2]); | 
| 427 | + |  | 
| 428 | + | this->data_[1] = -V1[2]*InvLength; | 
| 429 | + | this->data_[2] = (Real)0.0; | 
| 430 | + | this->data_[3] = +V1[0]*InvLength; | 
| 431 | + | } else { | 
| 432 | + | // V1.y or V1.z is the largest magnitude component | 
| 433 | + | InvLength = (Real)1.0 / sqrt(V1[1]*V1[1] + V1[2]*V1[2]); | 
| 434 | + |  | 
| 435 | + | this->data_[1] = (Real)0.0; | 
| 436 | + | this->data_[2] = +V1[2]*InvLength; | 
| 437 | + | this->data_[3] = -V1[1]*InvLength; | 
| 438 | + | } | 
| 439 | + | } | 
| 440 | + | return *this; | 
| 441 | + | } | 
| 442 | + |  | 
| 443 | + | void toTwistSwing ( Real& tw, Real& sx, Real& sy ) { | 
| 444 | + |  | 
| 445 | + | // First test if the swing is in the singularity: | 
| 446 | + |  | 
| 447 | + | if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; return; } | 
| 448 | + |  | 
| 449 | + | // Decompose into twist-swing by solving the equation: | 
| 450 | + | // | 
| 451 | + | //                       Qtwist(t*2) * Qswing(s*2) = q | 
| 452 | + | // | 
| 453 | + | // note: (x,y) is the normalized swing axis (x*x+y*y=1) | 
| 454 | + | // | 
| 455 | + | //          ( Ct 0 0 St ) * ( Cs xSs ySs 0 ) = ( qw qx qy qz ) | 
| 456 | + | //  ( CtCs  xSsCt-yStSs  xStSs+ySsCt  StCs ) = ( qw qx qy qz )      (1) | 
| 457 | + | // From (1): CtCs / StCs = qw/qz => Ct/St = qw/qz => tan(t) = qz/qw (2) | 
| 458 | + | // | 
| 459 | + | // The swing rotation/2 s comes from: | 
| 460 | + | // | 
| 461 | + | // From (1): (CtCs)^2 + (StCs)^2 = qw^2 + qz^2 => | 
| 462 | + | //                                       Cs = sqrt ( qw^2 + qz^2 ) (3) | 
| 463 | + | // | 
| 464 | + | // From (1): (xSsCt-yStSs)^2 + (xStSs+ySsCt)^2 = qx^2 + qy^2 => | 
| 465 | + | //                                       Ss = sqrt ( qx^2 + qy^2 ) (4) | 
| 466 | + | // From (1):  |SsCt -StSs| |x| = |qx| | 
| 467 | + | //            |StSs +SsCt| |y|   |qy|                              (5) | 
| 468 | + |  | 
| 469 | + | Real qw, qx, qy, qz; | 
| 470 | + |  | 
| 471 | + | if ( w()<0 ) { | 
| 472 | + | qw=-w(); | 
| 473 | + | qx=-x(); | 
| 474 | + | qy=-y(); | 
| 475 | + | qz=-z(); | 
| 476 | + | } else { | 
| 477 | + | qw=w(); | 
| 478 | + | qx=x(); | 
| 479 | + | qy=y(); | 
| 480 | + | qz=z(); | 
| 481 | + | } | 
| 482 | + |  | 
| 483 | + | Real t = atan2 ( qz, qw ); // from (2) | 
| 484 | + | Real s = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) ); // from (3) | 
| 485 | + | // and (4) | 
| 486 | + |  | 
| 487 | + | Real x=0.0, y=0.0, sins=sin(s); | 
| 488 | + |  | 
| 489 | + | if ( !ISZERO(sins,tiny) ) { | 
| 490 | + | Real sint = sin(t); | 
| 491 | + | Real cost = cos(t); | 
| 492 | + |  | 
| 493 | + | // by solving the linear system in (5): | 
| 494 | + | y = (-qx*sint + qy*cost)/sins; | 
| 495 | + | x = ( qx*cost + qy*sint)/sins; | 
| 496 | + | } | 
| 497 | + |  | 
| 498 | + | tw = (Real)2.0*t; | 
| 499 | + | sx = (Real)2.0*x*s; | 
| 500 | + | sy = (Real)2.0*y*s; | 
| 501 | + | } | 
| 502 | + |  | 
| 503 | + | void toSwingTwist(Real& sx, Real& sy, Real& tw ) { | 
| 504 | + |  | 
| 505 | + | // Decompose q into swing-twist using a similar development as | 
| 506 | + | // in function toTwistSwing | 
| 507 | + |  | 
| 508 | + | if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; } | 
| 509 | + |  | 
| 510 | + | Real qw, qx, qy, qz; | 
| 511 | + | if ( w() < 0 ){ | 
| 512 | + | qw=-w(); | 
| 513 | + | qx=-x(); | 
| 514 | + | qy=-y(); | 
| 515 | + | qz=-z(); | 
| 516 | + | } else { | 
| 517 | + | qw=w(); | 
| 518 | + | qx=x(); | 
| 519 | + | qy=y(); | 
| 520 | + | qz=z(); | 
| 521 | + | } | 
| 522 | + |  | 
| 523 | + | // Get the twist t: | 
| 524 | + | Real t = 2.0 * atan2(qz,qw); | 
| 525 | + |  | 
| 526 | + | Real bet = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) ); | 
| 527 | + | Real gam = t/2.0; | 
| 528 | + | Real sinc = ISZERO(bet,tiny)? 1.0 : sin(bet)/bet; | 
| 529 | + | Real singam = sin(gam); | 
| 530 | + | Real cosgam = cos(gam); | 
| 531 | + |  | 
| 532 | + | sx = Real( (2.0/sinc) * (cosgam*qx - singam*qy) ); | 
| 533 | + | sy = Real( (2.0/sinc) * (singam*qx + cosgam*qy) ); | 
| 534 | + | tw = Real( t ); | 
| 535 | + | } | 
| 536 | + |  | 
| 537 | + |  | 
| 538 | + |  | 
| 539 |  | /** | 
| 540 | < | * Returns the division of two quaternion | 
| 541 | < | * @param q1 divisor | 
| 255 | < | * @param q2 dividen | 
| 540 | > | * Returns the corresponding rotation matrix (3x3) | 
| 541 | > | * @return a 3x3 rotation matrix | 
| 542 |  | */ | 
| 543 | + | SquareMatrix<Real, 3> toRotationMatrix3() { | 
| 544 | + | SquareMatrix<Real, 3> rotMat3; | 
| 545 | + |  | 
| 546 | + | Real w2; | 
| 547 | + | Real x2; | 
| 548 | + | Real y2; | 
| 549 | + | Real z2; | 
| 550 |  |  | 
| 551 | < | template<typename Real> | 
| 552 | < | inline Quaternion<Real> operator /(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { | 
| 553 | < | return q1 * q2.inverse(); | 
| 551 | > | if (!this->isNormalized()) | 
| 552 | > | this->normalize(); | 
| 553 | > |  | 
| 554 | > | w2 = w() * w(); | 
| 555 | > | x2 = x() * x(); | 
| 556 | > | y2 = y() * y(); | 
| 557 | > | z2 = z() * z(); | 
| 558 | > |  | 
| 559 | > | rotMat3(0, 0) = w2 + x2 - y2 - z2; | 
| 560 | > | rotMat3(0, 1) = 2.0 * ( x() * y() + w() * z() ); | 
| 561 | > | rotMat3(0, 2) = 2.0 * ( x() * z() - w() * y() ); | 
| 562 | > |  | 
| 563 | > | rotMat3(1, 0) = 2.0 * ( x() * y() - w() * z() ); | 
| 564 | > | rotMat3(1, 1) = w2 - x2 + y2 - z2; | 
| 565 | > | rotMat3(1, 2) = 2.0 * ( y() * z() + w() * x() ); | 
| 566 | > |  | 
| 567 | > | rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() ); | 
| 568 | > | rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() ); | 
| 569 | > | rotMat3(2, 2) = w2 - x2 -y2 +z2; | 
| 570 | > |  | 
| 571 | > | return rotMat3; | 
| 572 |  | } | 
| 573 |  |  | 
| 574 | + | };//end Quaternion | 
| 575 | + |  | 
| 576 | + |  | 
| 577 |  | /** | 
| 578 | < | * Returns the value of the division of a scalar by a quaternion | 
| 579 | < | * @return the value of the division of a scalar by a quaternion | 
| 580 | < | * @param s scalar | 
| 581 | < | * @param q quaternion | 
| 268 | < | * @note for a quaternion q, 1/q = q.inverse() | 
| 578 | > | * Returns the vaule of scalar multiplication of this quaterion q (q * s). | 
| 579 | > | * @return  the vaule of scalar multiplication of this vector | 
| 580 | > | * @param q the source quaternion | 
| 581 | > | * @param s the scalar value | 
| 582 |  | */ | 
| 583 | < | template<typename Real> | 
| 584 | < | Quaternion<Real> operator /(const Real& s, const Quaternion<Real>& q) { | 
| 583 | > | template<typename Real, unsigned int Dim> | 
| 584 | > | Quaternion<Real> operator * ( const Quaternion<Real>& q, Real s) { | 
| 585 | > | Quaternion<Real> result(q); | 
| 586 | > | result.mul(s); | 
| 587 | > | return result; | 
| 588 | > | } | 
| 589 | > |  | 
| 590 | > | /** | 
| 591 | > | * Returns the vaule of scalar multiplication of this quaterion q (q * s). | 
| 592 | > | * @return  the vaule of scalar multiplication of this vector | 
| 593 | > | * @param s the scalar value | 
| 594 | > | * @param q the source quaternion | 
| 595 | > | */ | 
| 596 | > | template<typename Real, unsigned int Dim> | 
| 597 | > | Quaternion<Real> operator * ( const Real& s, const Quaternion<Real>& q ) { | 
| 598 | > | Quaternion<Real> result(q); | 
| 599 | > | result.mul(s); | 
| 600 | > | return result; | 
| 601 | > | } | 
| 602 |  |  | 
| 603 | < | Quaternion<Real> x = q.inv(); | 
| 604 | < | return x * s; | 
| 605 | < | } | 
| 603 | > | /** | 
| 604 | > | * Returns the multiplication of two quaternion | 
| 605 | > | * @return the multiplication of two quaternion | 
| 606 | > | * @param q1 the first quaternion | 
| 607 | > | * @param q2 the second quaternion | 
| 608 | > | */ | 
| 609 | > | template<typename Real> | 
| 610 | > | inline Quaternion<Real> operator *(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { | 
| 611 | > | Quaternion<Real> result(q1); | 
| 612 | > | result *= q2; | 
| 613 | > | return result; | 
| 614 | > | } | 
| 615 |  |  | 
| 616 | < | typedef Quaternion<double> Quat4d; | 
| 616 | > | /** | 
| 617 | > | * Returns the division of two quaternion | 
| 618 | > | * @param q1 divisor | 
| 619 | > | * @param q2 dividen | 
| 620 | > | */ | 
| 621 | > |  | 
| 622 | > | template<typename Real> | 
| 623 | > | inline Quaternion<Real> operator /( Quaternion<Real>& q1,  Quaternion<Real>& q2) { | 
| 624 | > | return q1 * q2.inverse(); | 
| 625 | > | } | 
| 626 | > |  | 
| 627 | > | /** | 
| 628 | > | * Returns the value of the division of a scalar by a quaternion | 
| 629 | > | * @return the value of the division of a scalar by a quaternion | 
| 630 | > | * @param s scalar | 
| 631 | > | * @param q quaternion | 
| 632 | > | * @note for a quaternion q, 1/q = q.inverse() | 
| 633 | > | */ | 
| 634 | > | template<typename Real> | 
| 635 | > | Quaternion<Real> operator /(const Real& s,  Quaternion<Real>& q) { | 
| 636 | > |  | 
| 637 | > | Quaternion<Real> x; | 
| 638 | > | x = q.inverse(); | 
| 639 | > | x *= s; | 
| 640 | > | return x; | 
| 641 | > | } | 
| 642 | > |  | 
| 643 | > | template <class T> | 
| 644 | > | inline bool operator==(const Quaternion<T>& lhs, const Quaternion<T>& rhs) { | 
| 645 | > | return equal(lhs[0] ,rhs[0]) && equal(lhs[1] , rhs[1]) && equal(lhs[2], rhs[2]) && equal(lhs[3], rhs[3]); | 
| 646 | > | } | 
| 647 | > |  | 
| 648 | > | typedef Quaternion<RealType> Quat4d; | 
| 649 |  | } | 
| 650 |  | #endif //MATH_QUATERNION_HPP |