| 1 |  | /* | 
| 2 | < | * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project | 
| 3 | < | * | 
| 4 | < | * Contact: oopse@oopse.org | 
| 5 | < | * | 
| 6 | < | * This program is free software; you can redistribute it and/or | 
| 7 | < | * modify it under the terms of the GNU Lesser General Public License | 
| 8 | < | * as published by the Free Software Foundation; either version 2.1 | 
| 9 | < | * of the License, or (at your option) any later version. | 
| 10 | < | * All we ask is that proper credit is given for our work, which includes | 
| 11 | < | * - but is not limited to - adding the above copyright notice to the beginning | 
| 12 | < | * of your source code files, and to any copyright notice that you may distribute | 
| 13 | < | * with programs based on this work. | 
| 14 | < | * | 
| 15 | < | * This program is distributed in the hope that it will be useful, | 
| 16 | < | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 17 | < | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 18 | < | * GNU Lesser General Public License for more details. | 
| 19 | < | * | 
| 20 | < | * You should have received a copy of the GNU Lesser General Public License | 
| 21 | < | * along with this program; if not, write to the Free Software | 
| 22 | < | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA. | 
| 2 | > | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 |  | * | 
| 4 | + | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | + | * non-exclusive, royalty free, license to use, modify and | 
| 6 | + | * redistribute this software in source and binary code form, provided | 
| 7 | + | * that the following conditions are met: | 
| 8 | + | * | 
| 9 | + | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | + | *    publication of scientific results based in part on use of the | 
| 11 | + | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | + | *    the article in which the program was described (Matthew | 
| 13 | + | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | + | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | + | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | + | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | + | * | 
| 18 | + | * 2. Redistributions of source code must retain the above copyright | 
| 19 | + | *    notice, this list of conditions and the following disclaimer. | 
| 20 | + | * | 
| 21 | + | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | + | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | + | *    documentation and/or other materials provided with the | 
| 24 | + | *    distribution. | 
| 25 | + | * | 
| 26 | + | * This software is provided "AS IS," without a warranty of any | 
| 27 | + | * kind. All express or implied conditions, representations and | 
| 28 | + | * warranties, including any implied warranty of merchantability, | 
| 29 | + | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | + | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | + | * be liable for any damages suffered by licensee as a result of | 
| 32 | + | * using, modifying or distributing the software or its | 
| 33 | + | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | + | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | + | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | + | * damages, however caused and regardless of the theory of liability, | 
| 37 | + | * arising out of the use of or inability to use software, even if the | 
| 38 | + | * University of Notre Dame has been advised of the possibility of | 
| 39 | + | * such damages. | 
| 40 |  | */ | 
| 41 | < |  | 
| 41 | > |  | 
| 42 |  | /** | 
| 43 |  | * @file Quaternion.hpp | 
| 44 |  | * @author Teng Lin | 
| 50 |  | #define MATH_QUATERNION_HPP | 
| 51 |  |  | 
| 52 |  | #include "math/Vector.hpp" | 
| 53 | + | #include "math/SquareMatrix.hpp" | 
| 54 |  |  | 
| 55 |  | namespace oopse{ | 
| 56 |  |  | 
| 57 | < | /** | 
| 58 | < | * @class Quaternion Quaternion.hpp "math/Quaternion.hpp" | 
| 59 | < | * Quaternion is a sort of a higher-level complex number. | 
| 60 | < | * It is defined as Q = w + x*i + y*j + z*k, | 
| 61 | < | * where w, x, y, and z are numbers of type T (e.g. double), and | 
| 62 | < | * i*i = -1; j*j = -1; k*k = -1; | 
| 63 | < | * i*j = k; j*k = i; k*i = j; | 
| 64 | < | */ | 
| 65 | < | template<typename Real> | 
| 66 | < | class Quaternion : public Vector<Real, 4> { | 
| 67 | < | public: | 
| 68 | < | Quaternion(); | 
| 57 | > | /** | 
| 58 | > | * @class Quaternion Quaternion.hpp "math/Quaternion.hpp" | 
| 59 | > | * Quaternion is a sort of a higher-level complex number. | 
| 60 | > | * It is defined as Q = w + x*i + y*j + z*k, | 
| 61 | > | * where w, x, y, and z are numbers of type T (e.g. RealType), and | 
| 62 | > | * i*i = -1; j*j = -1; k*k = -1; | 
| 63 | > | * i*j = k; j*k = i; k*i = j; | 
| 64 | > | */ | 
| 65 | > | template<typename Real> | 
| 66 | > | class Quaternion : public Vector<Real, 4> { | 
| 67 | > | public: | 
| 68 | > | Quaternion() : Vector<Real, 4>() {} | 
| 69 |  |  | 
| 70 | < | /** Constructs and initializes a Quaternion from w, x, y, z values */ | 
| 71 | < | Quaternion(Real w, Real x, Real y, Real z) { | 
| 72 | < | data_[0] = w; | 
| 73 | < | data_[1] = x; | 
| 74 | < | data_[2] = y; | 
| 75 | < | data_[3] = z; | 
| 76 | < | } | 
| 70 | > | /** Constructs and initializes a Quaternion from w, x, y, z values */ | 
| 71 | > | Quaternion(Real w, Real x, Real y, Real z) { | 
| 72 | > | this->data_[0] = w; | 
| 73 | > | this->data_[1] = x; | 
| 74 | > | this->data_[2] = y; | 
| 75 | > | this->data_[3] = z; | 
| 76 | > | } | 
| 77 |  |  | 
| 78 | < | /** | 
| 79 | < | * | 
| 80 | < | */ | 
| 81 | < | Quaternion(const Vector<Real,4>& v) | 
| 65 | < | : Vector<Real, 4>(v){ | 
| 66 | < | } | 
| 78 | > | /** Constructs and initializes a Quaternion from a  Vector<Real,4> */ | 
| 79 | > | Quaternion(const Vector<Real,4>& v) | 
| 80 | > | : Vector<Real, 4>(v){ | 
| 81 | > | } | 
| 82 |  |  | 
| 83 | < | /** */ | 
| 84 | < | Quaternion& operator =(const Vector<Real, 4>& v){ | 
| 85 | < | if (this == & v) | 
| 86 | < | return *this; | 
| 83 | > | /** copy assignment */ | 
| 84 | > | Quaternion& operator =(const Vector<Real, 4>& v){ | 
| 85 | > | if (this == & v) | 
| 86 | > | return *this; | 
| 87 |  |  | 
| 88 | < | Vector<Real, 4>::operator=(v); | 
| 88 | > | Vector<Real, 4>::operator=(v); | 
| 89 |  |  | 
| 90 | < | return *this; | 
| 91 | < | } | 
| 90 | > | return *this; | 
| 91 | > | } | 
| 92 |  |  | 
| 93 | < | /** | 
| 94 | < | * Returns the value of the first element of this quaternion. | 
| 95 | < | * @return the value of the first element of this quaternion | 
| 96 | < | */ | 
| 97 | < | Real w() const { | 
| 98 | < | return data_[0]; | 
| 99 | < | } | 
| 93 | > | /** | 
| 94 | > | * Returns the value of the first element of this quaternion. | 
| 95 | > | * @return the value of the first element of this quaternion | 
| 96 | > | */ | 
| 97 | > | Real w() const { | 
| 98 | > | return this->data_[0]; | 
| 99 | > | } | 
| 100 |  |  | 
| 101 | < | /** | 
| 102 | < | * Returns the reference of the first element of this quaternion. | 
| 103 | < | * @return the reference of the first element of this quaternion | 
| 104 | < | */ | 
| 105 | < | Real& w() { | 
| 106 | < | return data_[0]; | 
| 107 | < | } | 
| 101 | > | /** | 
| 102 | > | * Returns the reference of the first element of this quaternion. | 
| 103 | > | * @return the reference of the first element of this quaternion | 
| 104 | > | */ | 
| 105 | > | Real& w() { | 
| 106 | > | return this->data_[0]; | 
| 107 | > | } | 
| 108 |  |  | 
| 109 | < | /** | 
| 110 | < | * Returns the value of the first element of this quaternion. | 
| 111 | < | * @return the value of the first element of this quaternion | 
| 112 | < | */ | 
| 113 | < | Real x() const { | 
| 114 | < | return data_[1]; | 
| 115 | < | } | 
| 109 | > | /** | 
| 110 | > | * Returns the value of the first element of this quaternion. | 
| 111 | > | * @return the value of the first element of this quaternion | 
| 112 | > | */ | 
| 113 | > | Real x() const { | 
| 114 | > | return this->data_[1]; | 
| 115 | > | } | 
| 116 |  |  | 
| 117 | < | /** | 
| 118 | < | * Returns the reference of the second element of this quaternion. | 
| 119 | < | * @return the reference of the second element of this quaternion | 
| 120 | < | */ | 
| 121 | < | Real& x() { | 
| 122 | < | return data_[1]; | 
| 123 | < | } | 
| 117 | > | /** | 
| 118 | > | * Returns the reference of the second element of this quaternion. | 
| 119 | > | * @return the reference of the second element of this quaternion | 
| 120 | > | */ | 
| 121 | > | Real& x() { | 
| 122 | > | return this->data_[1]; | 
| 123 | > | } | 
| 124 |  |  | 
| 125 | < | /** | 
| 126 | < | * Returns the value of the thirf element of this quaternion. | 
| 127 | < | * @return the value of the third element of this quaternion | 
| 128 | < | */ | 
| 129 | < | Real y() const { | 
| 130 | < | return data_[2]; | 
| 131 | < | } | 
| 125 | > | /** | 
| 126 | > | * Returns the value of the thirf element of this quaternion. | 
| 127 | > | * @return the value of the third element of this quaternion | 
| 128 | > | */ | 
| 129 | > | Real y() const { | 
| 130 | > | return this->data_[2]; | 
| 131 | > | } | 
| 132 |  |  | 
| 133 | < | /** | 
| 134 | < | * Returns the reference of the third element of this quaternion. | 
| 135 | < | * @return the reference of the third element of this quaternion | 
| 136 | < | */ | 
| 137 | < | Real& y() { | 
| 138 | < | return data_[2]; | 
| 139 | < | } | 
| 133 | > | /** | 
| 134 | > | * Returns the reference of the third element of this quaternion. | 
| 135 | > | * @return the reference of the third element of this quaternion | 
| 136 | > | */ | 
| 137 | > | Real& y() { | 
| 138 | > | return this->data_[2]; | 
| 139 | > | } | 
| 140 |  |  | 
| 141 | < | /** | 
| 142 | < | * Returns the value of the fourth element of this quaternion. | 
| 143 | < | * @return the value of the fourth element of this quaternion | 
| 144 | < | */ | 
| 145 | < | Real z() const { | 
| 146 | < | return data_[3]; | 
| 147 | < | } | 
| 148 | < | /** | 
| 149 | < | * Returns the reference of the fourth element of this quaternion. | 
| 150 | < | * @return the reference of the fourth element of this quaternion | 
| 151 | < | */ | 
| 152 | < | Real& z() { | 
| 153 | < | return data_[3]; | 
| 154 | < | } | 
| 141 | > | /** | 
| 142 | > | * Returns the value of the fourth element of this quaternion. | 
| 143 | > | * @return the value of the fourth element of this quaternion | 
| 144 | > | */ | 
| 145 | > | Real z() const { | 
| 146 | > | return this->data_[3]; | 
| 147 | > | } | 
| 148 | > | /** | 
| 149 | > | * Returns the reference of the fourth element of this quaternion. | 
| 150 | > | * @return the reference of the fourth element of this quaternion | 
| 151 | > | */ | 
| 152 | > | Real& z() { | 
| 153 | > | return this->data_[3]; | 
| 154 | > | } | 
| 155 |  |  | 
| 156 | < | /** | 
| 157 | < | * Returns the inverse of this quaternion | 
| 158 | < | * @return inverse | 
| 159 | < | * @note since quaternion is a complex number, the inverse of quaternion | 
| 160 | < | * q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2) | 
| 161 | < | */ | 
| 162 | < | Quaternion<Real> inverse(){ | 
| 163 | < | Quaternion<Real> q; | 
| 164 | < | Real d = this->lengthSquared(); | 
| 156 | > | /** | 
| 157 | > | * Tests if this quaternion is equal to other quaternion | 
| 158 | > | * @return true if equal, otherwise return false | 
| 159 | > | * @param q quaternion to be compared | 
| 160 | > | */ | 
| 161 | > | inline bool operator ==(const Quaternion<Real>& q) { | 
| 162 | > |  | 
| 163 | > | for (unsigned int i = 0; i < 4; i ++) { | 
| 164 | > | if (!equal(this->data_[i], q[i])) { | 
| 165 | > | return false; | 
| 166 | > | } | 
| 167 | > | } | 
| 168 |  |  | 
| 169 | < | q.w() = w() / d; | 
| 170 | < | q.x() = -x() / d; | 
| 171 | < | q.y() = -y() / d; | 
| 172 | < | q.z() = -z() / d; | 
| 169 | > | return true; | 
| 170 | > | } | 
| 171 | > |  | 
| 172 | > | /** | 
| 173 | > | * Returns the inverse of this quaternion | 
| 174 | > | * @return inverse | 
| 175 | > | * @note since quaternion is a complex number, the inverse of quaternion | 
| 176 | > | * q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2) | 
| 177 | > | */ | 
| 178 | > | Quaternion<Real> inverse() { | 
| 179 | > | Quaternion<Real> q; | 
| 180 | > | Real d = this->lengthSquare(); | 
| 181 |  |  | 
| 182 | < | return q; | 
| 183 | < | } | 
| 182 | > | q.w() = w() / d; | 
| 183 | > | q.x() = -x() / d; | 
| 184 | > | q.y() = -y() / d; | 
| 185 | > | q.z() = -z() / d; | 
| 186 | > |  | 
| 187 | > | return q; | 
| 188 | > | } | 
| 189 |  |  | 
| 190 | < | /** | 
| 191 | < | * Sets the value to the multiplication of itself and another quaternion | 
| 192 | < | * @param q the other quaternion | 
| 193 | < | */ | 
| 194 | < | void mul(const Quaternion<Real>& q) { | 
| 190 | > | /** | 
| 191 | > | * Sets the value to the multiplication of itself and another quaternion | 
| 192 | > | * @param q the other quaternion | 
| 193 | > | */ | 
| 194 | > | void mul(const Quaternion<Real>& q) { | 
| 195 | > | Quaternion<Real> tmp(*this); | 
| 196 |  |  | 
| 197 | < | Real a0( (z() - y()) * (q.y() - q.z()) ); | 
| 198 | < | Real a1( (w() + x()) * (q.w() + q.x()) ); | 
| 199 | < | Real a2( (w() - x()) * (q.y() + q.z()) ); | 
| 200 | < | Real a3( (y() + z()) * (q.w() - q.x()) ); | 
| 201 | < | Real b0( -(x() - z()) * (q.x() - q.y()) ); | 
| 170 | < | Real b1( -(x() + z()) * (q.x() + q.y()) ); | 
| 171 | < | Real b2( (w() + y()) * (q.w() - q.z()) ); | 
| 172 | < | Real b3( (w() - y()) * (q.w() + q.z()) ); | 
| 197 | > | this->data_[0] = (tmp[0]*q[0]) -(tmp[1]*q[1]) - (tmp[2]*q[2]) - (tmp[3]*q[3]); | 
| 198 | > | this->data_[1] = (tmp[0]*q[1]) + (tmp[1]*q[0]) + (tmp[2]*q[3]) - (tmp[3]*q[2]); | 
| 199 | > | this->data_[2] = (tmp[0]*q[2]) + (tmp[2]*q[0]) + (tmp[3]*q[1]) - (tmp[1]*q[3]); | 
| 200 | > | this->data_[3] = (tmp[0]*q[3]) + (tmp[3]*q[0]) + (tmp[1]*q[2]) - (tmp[2]*q[1]); | 
| 201 | > | } | 
| 202 |  |  | 
| 203 | < | data_[0] = a0 + 0.5*(b0 + b1 + b2 + b3),; | 
| 204 | < | data_[1] = a1 + 0.5*(b0 + b1 - b2 - b3); | 
| 205 | < | data_[2] = a2 + 0.5*(b0 - b1 + b2 - b3), | 
| 206 | < | data_[3] = a3 + 0.5*(b0 - b1 - b2 + b3) ); | 
| 207 | < | } | 
| 203 | > | void mul(const Real& s) { | 
| 204 | > | this->data_[0] *= s; | 
| 205 | > | this->data_[1] *= s; | 
| 206 | > | this->data_[2] *= s; | 
| 207 | > | this->data_[3] *= s; | 
| 208 | > | } | 
| 209 |  |  | 
| 210 | + | /** Set the value of this quaternion to the division of itself by another quaternion */ | 
| 211 | + | void div(Quaternion<Real>& q) { | 
| 212 | + | mul(q.inverse()); | 
| 213 | + | } | 
| 214 |  |  | 
| 215 | < | /** Set the value of this quaternion to the division of itself by another quaternion */ | 
| 216 | < | void div(const Quaternion<Real>& q) { | 
| 217 | < | mul(q.inverse()); | 
| 218 | < | } | 
| 215 | > | void div(const Real& s) { | 
| 216 | > | this->data_[0] /= s; | 
| 217 | > | this->data_[1] /= s; | 
| 218 | > | this->data_[2] /= s; | 
| 219 | > | this->data_[3] /= s; | 
| 220 | > | } | 
| 221 |  |  | 
| 222 | < | Quaternion<Real>& operator *=(const Quaternion<Real>& q) { | 
| 223 | < | mul(q); | 
| 224 | < | return *this; | 
| 225 | < | } | 
| 226 | < |  | 
| 227 | < | Quaternion<Real>& operator /=(const Quaternion<Real>& q) { | 
| 228 | < | mul(q.inverse()); | 
| 229 | < | return *this; | 
| 230 | < | } | 
| 222 | > | Quaternion<Real>& operator *=(const Quaternion<Real>& q) { | 
| 223 | > | mul(q); | 
| 224 | > | return *this; | 
| 225 | > | } | 
| 226 | > |  | 
| 227 | > | Quaternion<Real>& operator *=(const Real& s) { | 
| 228 | > | mul(s); | 
| 229 | > | return *this; | 
| 230 | > | } | 
| 231 |  |  | 
| 232 | < | /** | 
| 233 | < | * Returns the conjugate quaternion of this quaternion | 
| 234 | < | * @return the conjugate quaternion of this quaternion | 
| 235 | < | */ | 
| 200 | < | Quaternion<Real> conjugate() { | 
| 201 | < | return Quaternion<Real>(w(), -x(), -y(), -z()); | 
| 202 | < | } | 
| 232 | > | Quaternion<Real>& operator /=(Quaternion<Real>& q) { | 
| 233 | > | *this *= q.inverse(); | 
| 234 | > | return *this; | 
| 235 | > | } | 
| 236 |  |  | 
| 237 | < | /** | 
| 238 | < | * Returns the corresponding rotation matrix (3x3) | 
| 239 | < | * @return a 3x3 rotation matrix | 
| 240 | < | */ | 
| 241 | < | SquareMatrix<Real, 3, 3> toRotationMatrix3() { | 
| 242 | < | SquareMatrix<Real, 3, 3> rotMat3; | 
| 237 | > | Quaternion<Real>& operator /=(const Real& s) { | 
| 238 | > | div(s); | 
| 239 | > | return *this; | 
| 240 | > | } | 
| 241 | > | /** | 
| 242 | > | * Returns the conjugate quaternion of this quaternion | 
| 243 | > | * @return the conjugate quaternion of this quaternion | 
| 244 | > | */ | 
| 245 | > | Quaternion<Real> conjugate() { | 
| 246 | > | return Quaternion<Real>(w(), -x(), -y(), -z()); | 
| 247 | > | } | 
| 248 |  |  | 
| 249 | < | Real w2; | 
| 250 | < | Real x2; | 
| 251 | < | Real y2; | 
| 252 | < | Real z2; | 
| 249 | > | /** | 
| 250 | > | * Returns the corresponding rotation matrix (3x3) | 
| 251 | > | * @return a 3x3 rotation matrix | 
| 252 | > | */ | 
| 253 | > | SquareMatrix<Real, 3> toRotationMatrix3() { | 
| 254 | > | SquareMatrix<Real, 3> rotMat3; | 
| 255 |  |  | 
| 256 | < | if (!isNormalized()) | 
| 257 | < | normalize(); | 
| 256 | > | Real w2; | 
| 257 | > | Real x2; | 
| 258 | > | Real y2; | 
| 259 | > | Real z2; | 
| 260 | > |  | 
| 261 | > | if (!this->isNormalized()) | 
| 262 | > | this->normalize(); | 
| 263 |  |  | 
| 264 | < | w2 = w() * w(); | 
| 265 | < | x2 = x() * x(); | 
| 266 | < | y2 = y() * y(); | 
| 267 | < | z2 = z() * z(); | 
| 264 | > | w2 = w() * w(); | 
| 265 | > | x2 = x() * x(); | 
| 266 | > | y2 = y() * y(); | 
| 267 | > | z2 = z() * z(); | 
| 268 |  |  | 
| 269 | < | rotMat3(0, 0) = w2 + x2 - y2 - z2; | 
| 270 | < | rotMat3(0, 1) = 2.0 * ( x() * y() + w() * z() ); | 
| 271 | < | rotMat3(0, 2) = 2.0 * ( x() * z() - w() * y() ); | 
| 269 | > | rotMat3(0, 0) = w2 + x2 - y2 - z2; | 
| 270 | > | rotMat3(0, 1) = 2.0 * ( x() * y() + w() * z() ); | 
| 271 | > | rotMat3(0, 2) = 2.0 * ( x() * z() - w() * y() ); | 
| 272 |  |  | 
| 273 | < | rotMat3(1, 0) = 2.0 * ( x() * y() - w() * z() ); | 
| 274 | < | rotMat3(1, 1) = w2 - x2 + y2 - z2; | 
| 275 | < | rotMat3(1, 2) = 2.0 * ( y() * z() + w() * x() ); | 
| 273 | > | rotMat3(1, 0) = 2.0 * ( x() * y() - w() * z() ); | 
| 274 | > | rotMat3(1, 1) = w2 - x2 + y2 - z2; | 
| 275 | > | rotMat3(1, 2) = 2.0 * ( y() * z() + w() * x() ); | 
| 276 |  |  | 
| 277 | < | rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() ); | 
| 278 | < | rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() ); | 
| 279 | < | rotMat3(2, 2) = w2 - x2 -y2 +z2; | 
| 235 | < | } | 
| 277 | > | rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() ); | 
| 278 | > | rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() ); | 
| 279 | > | rotMat3(2, 2) = w2 - x2 -y2 +z2; | 
| 280 |  |  | 
| 281 | < | };//end Quaternion | 
| 238 | < |  | 
| 239 | < | /** | 
| 240 | < | * Returns the multiplication of two quaternion | 
| 241 | < | * @return the multiplication of two quaternion | 
| 242 | < | * @param q1 the first quaternion | 
| 243 | < | * @param q2 the second quaternion | 
| 244 | < | */ | 
| 245 | < | template<typename Real> | 
| 246 | < | inline Quaternion<Real> operator *(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { | 
| 247 | < | Quaternion<Real> result(q1); | 
| 248 | < | result *= q2; | 
| 249 | < | return result; | 
| 281 | > | return rotMat3; | 
| 282 |  | } | 
| 283 |  |  | 
| 284 | < | /** | 
| 253 | < | * Returns the division of two quaternion | 
| 254 | < | * @param q1 divisor | 
| 255 | < | * @param q2 dividen | 
| 256 | < | */ | 
| 284 | > | };//end Quaternion | 
| 285 |  |  | 
| 258 | – | template<typename Real> | 
| 259 | – | inline Quaternion<Real> operator /(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { | 
| 260 | – | return q1 * q2.inverse(); | 
| 261 | – | } | 
| 286 |  |  | 
| 287 |  | /** | 
| 288 | < | * Returns the value of the division of a scalar by a quaternion | 
| 289 | < | * @return the value of the division of a scalar by a quaternion | 
| 290 | < | * @param s scalar | 
| 291 | < | * @param q quaternion | 
| 268 | < | * @note for a quaternion q, 1/q = q.inverse() | 
| 288 | > | * Returns the vaule of scalar multiplication of this quaterion q (q * s). | 
| 289 | > | * @return  the vaule of scalar multiplication of this vector | 
| 290 | > | * @param q the source quaternion | 
| 291 | > | * @param s the scalar value | 
| 292 |  | */ | 
| 293 | < | template<typename Real> | 
| 294 | < | Quaternion<Real> operator /(const Quaternion<Real>& s, const Quaternion<Real>& q) { | 
| 293 | > | template<typename Real, unsigned int Dim> | 
| 294 | > | Quaternion<Real> operator * ( const Quaternion<Real>& q, Real s) { | 
| 295 | > | Quaternion<Real> result(q); | 
| 296 | > | result.mul(s); | 
| 297 | > | return result; | 
| 298 | > | } | 
| 299 | > |  | 
| 300 | > | /** | 
| 301 | > | * Returns the vaule of scalar multiplication of this quaterion q (q * s). | 
| 302 | > | * @return  the vaule of scalar multiplication of this vector | 
| 303 | > | * @param s the scalar value | 
| 304 | > | * @param q the source quaternion | 
| 305 | > | */ | 
| 306 | > | template<typename Real, unsigned int Dim> | 
| 307 | > | Quaternion<Real> operator * ( const Real& s, const Quaternion<Real>& q ) { | 
| 308 | > | Quaternion<Real> result(q); | 
| 309 | > | result.mul(s); | 
| 310 | > | return result; | 
| 311 | > | } | 
| 312 |  |  | 
| 313 | < | Quaternion<Real> x = q.inv(); | 
| 314 | < | return x * s; | 
| 315 | < | } | 
| 313 | > | /** | 
| 314 | > | * Returns the multiplication of two quaternion | 
| 315 | > | * @return the multiplication of two quaternion | 
| 316 | > | * @param q1 the first quaternion | 
| 317 | > | * @param q2 the second quaternion | 
| 318 | > | */ | 
| 319 | > | template<typename Real> | 
| 320 | > | inline Quaternion<Real> operator *(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { | 
| 321 | > | Quaternion<Real> result(q1); | 
| 322 | > | result *= q2; | 
| 323 | > | return result; | 
| 324 | > | } | 
| 325 |  |  | 
| 326 | < | typedef Quaternion<double> Quat4d; | 
| 326 | > | /** | 
| 327 | > | * Returns the division of two quaternion | 
| 328 | > | * @param q1 divisor | 
| 329 | > | * @param q2 dividen | 
| 330 | > | */ | 
| 331 | > |  | 
| 332 | > | template<typename Real> | 
| 333 | > | inline Quaternion<Real> operator /( Quaternion<Real>& q1,  Quaternion<Real>& q2) { | 
| 334 | > | return q1 * q2.inverse(); | 
| 335 | > | } | 
| 336 | > |  | 
| 337 | > | /** | 
| 338 | > | * Returns the value of the division of a scalar by a quaternion | 
| 339 | > | * @return the value of the division of a scalar by a quaternion | 
| 340 | > | * @param s scalar | 
| 341 | > | * @param q quaternion | 
| 342 | > | * @note for a quaternion q, 1/q = q.inverse() | 
| 343 | > | */ | 
| 344 | > | template<typename Real> | 
| 345 | > | Quaternion<Real> operator /(const Real& s,  Quaternion<Real>& q) { | 
| 346 | > |  | 
| 347 | > | Quaternion<Real> x; | 
| 348 | > | x = q.inverse(); | 
| 349 | > | x *= s; | 
| 350 | > | return x; | 
| 351 | > | } | 
| 352 | > |  | 
| 353 | > | template <class T> | 
| 354 | > | inline bool operator==(const Quaternion<T>& lhs, const Quaternion<T>& rhs) { | 
| 355 | > | return equal(lhs[0] ,rhs[0]) && equal(lhs[1] , rhs[1]) && equal(lhs[2], rhs[2]) && equal(lhs[3], rhs[3]); | 
| 356 | > | } | 
| 357 | > |  | 
| 358 | > | typedef Quaternion<RealType> Quat4d; | 
| 359 |  | } | 
| 360 |  | #endif //MATH_QUATERNION_HPP |