| 34 |
|
#define MATH_QUATERNION_HPP |
| 35 |
|
|
| 36 |
|
#include "math/Vector.hpp" |
| 37 |
+ |
#include "math/SquareMatrix.hpp" |
| 38 |
|
|
| 39 |
|
namespace oopse{ |
| 40 |
|
|
| 49 |
|
template<typename Real> |
| 50 |
|
class Quaternion : public Vector<Real, 4> { |
| 51 |
|
public: |
| 52 |
< |
Quaternion(); |
| 52 |
> |
Quaternion() : Vector<Real, 4>() {} |
| 53 |
|
|
| 54 |
|
/** Constructs and initializes a Quaternion from w, x, y, z values */ |
| 55 |
|
Quaternion(Real w, Real x, Real y, Real z) { |
| 59 |
|
data_[3] = z; |
| 60 |
|
} |
| 61 |
|
|
| 62 |
< |
/** |
| 62 |
< |
* |
| 63 |
< |
*/ |
| 62 |
> |
/** Constructs and initializes a Quaternion from a Vector<Real,4> */ |
| 63 |
|
Quaternion(const Vector<Real,4>& v) |
| 64 |
|
: Vector<Real, 4>(v){ |
| 65 |
|
} |
| 66 |
|
|
| 67 |
< |
/** */ |
| 67 |
> |
/** copy assignment */ |
| 68 |
|
Quaternion& operator =(const Vector<Real, 4>& v){ |
| 69 |
|
if (this == & v) |
| 70 |
|
return *this; |
| 138 |
|
} |
| 139 |
|
|
| 140 |
|
/** |
| 141 |
+ |
* Tests if this quaternion is equal to other quaternion |
| 142 |
+ |
* @return true if equal, otherwise return false |
| 143 |
+ |
* @param q quaternion to be compared |
| 144 |
+ |
*/ |
| 145 |
+ |
inline bool operator ==(const Quaternion<Real>& q) { |
| 146 |
+ |
|
| 147 |
+ |
for (unsigned int i = 0; i < 4; i ++) { |
| 148 |
+ |
if (!equal(data_[i], q[i])) { |
| 149 |
+ |
return false; |
| 150 |
+ |
} |
| 151 |
+ |
} |
| 152 |
+ |
|
| 153 |
+ |
return true; |
| 154 |
+ |
} |
| 155 |
+ |
|
| 156 |
+ |
/** |
| 157 |
|
* Returns the inverse of this quaternion |
| 158 |
|
* @return inverse |
| 159 |
|
* @note since quaternion is a complex number, the inverse of quaternion |
| 160 |
|
* q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2) |
| 161 |
|
*/ |
| 162 |
< |
Quaternion<Real> inverse(){ |
| 162 |
> |
Quaternion<Real> inverse() { |
| 163 |
|
Quaternion<Real> q; |
| 164 |
< |
Real d = this->lengthSquared(); |
| 164 |
> |
Real d = this->lengthSquare(); |
| 165 |
|
|
| 166 |
|
q.w() = w() / d; |
| 167 |
|
q.x() = -x() / d; |
| 176 |
|
* @param q the other quaternion |
| 177 |
|
*/ |
| 178 |
|
void mul(const Quaternion<Real>& q) { |
| 179 |
+ |
Quaternion<Real> tmp(*this); |
| 180 |
|
|
| 181 |
< |
Real a0( (z() - y()) * (q.y() - q.z()) ); |
| 182 |
< |
Real a1( (w() + x()) * (q.w() + q.x()) ); |
| 183 |
< |
Real a2( (w() - x()) * (q.y() + q.z()) ); |
| 184 |
< |
Real a3( (y() + z()) * (q.w() - q.x()) ); |
| 185 |
< |
Real b0( -(x() - z()) * (q.x() - q.y()) ); |
| 170 |
< |
Real b1( -(x() + z()) * (q.x() + q.y()) ); |
| 171 |
< |
Real b2( (w() + y()) * (q.w() - q.z()) ); |
| 172 |
< |
Real b3( (w() - y()) * (q.w() + q.z()) ); |
| 181 |
> |
data_[0] = (tmp[0]*q[0]) -(tmp[1]*q[1]) - (tmp[2]*q[2]) - (tmp[3]*q[3]); |
| 182 |
> |
data_[1] = (tmp[0]*q[1]) + (tmp[1]*q[0]) + (tmp[2]*q[3]) - (tmp[3]*q[2]); |
| 183 |
> |
data_[2] = (tmp[0]*q[2]) + (tmp[2]*q[0]) + (tmp[3]*q[1]) - (tmp[1]*q[3]); |
| 184 |
> |
data_[3] = (tmp[0]*q[3]) + (tmp[3]*q[0]) + (tmp[1]*q[2]) - (tmp[2]*q[1]); |
| 185 |
> |
} |
| 186 |
|
|
| 187 |
< |
data_[0] = a0 + 0.5*(b0 + b1 + b2 + b3),; |
| 188 |
< |
data_[1] = a1 + 0.5*(b0 + b1 - b2 - b3); |
| 189 |
< |
data_[2] = a2 + 0.5*(b0 - b1 + b2 - b3), |
| 190 |
< |
data_[3] = a3 + 0.5*(b0 - b1 - b2 + b3) ); |
| 187 |
> |
void mul(const Real& s) { |
| 188 |
> |
data_[0] *= s; |
| 189 |
> |
data_[1] *= s; |
| 190 |
> |
data_[2] *= s; |
| 191 |
> |
data_[3] *= s; |
| 192 |
|
} |
| 193 |
|
|
| 180 |
– |
|
| 194 |
|
/** Set the value of this quaternion to the division of itself by another quaternion */ |
| 195 |
< |
void div(const Quaternion<Real>& q) { |
| 195 |
> |
void div(Quaternion<Real>& q) { |
| 196 |
|
mul(q.inverse()); |
| 197 |
|
} |
| 198 |
+ |
|
| 199 |
+ |
void div(const Real& s) { |
| 200 |
+ |
data_[0] /= s; |
| 201 |
+ |
data_[1] /= s; |
| 202 |
+ |
data_[2] /= s; |
| 203 |
+ |
data_[3] /= s; |
| 204 |
+ |
} |
| 205 |
|
|
| 206 |
|
Quaternion<Real>& operator *=(const Quaternion<Real>& q) { |
| 207 |
|
mul(q); |
| 208 |
|
return *this; |
| 209 |
|
} |
| 210 |
< |
|
| 211 |
< |
Quaternion<Real>& operator /=(const Quaternion<Real>& q) { |
| 212 |
< |
mul(q.inverse()); |
| 210 |
> |
|
| 211 |
> |
Quaternion<Real>& operator *=(const Real& s) { |
| 212 |
> |
mul(s); |
| 213 |
|
return *this; |
| 214 |
|
} |
| 215 |
|
|
| 216 |
+ |
Quaternion<Real>& operator /=(Quaternion<Real>& q) { |
| 217 |
+ |
*this *= q.inverse(); |
| 218 |
+ |
return *this; |
| 219 |
+ |
} |
| 220 |
+ |
|
| 221 |
+ |
Quaternion<Real>& operator /=(const Real& s) { |
| 222 |
+ |
div(s); |
| 223 |
+ |
return *this; |
| 224 |
+ |
} |
| 225 |
|
/** |
| 226 |
|
* Returns the conjugate quaternion of this quaternion |
| 227 |
|
* @return the conjugate quaternion of this quaternion |
| 234 |
|
* Returns the corresponding rotation matrix (3x3) |
| 235 |
|
* @return a 3x3 rotation matrix |
| 236 |
|
*/ |
| 237 |
< |
SquareMatrix<Real, 3, 3> toRotationMatrix3() { |
| 238 |
< |
SquareMatrix<Real, 3, 3> rotMat3; |
| 237 |
> |
SquareMatrix<Real, 3> toRotationMatrix3() { |
| 238 |
> |
SquareMatrix<Real, 3> rotMat3; |
| 239 |
|
|
| 240 |
|
Real w2; |
| 241 |
|
Real x2; |
| 261 |
|
rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() ); |
| 262 |
|
rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() ); |
| 263 |
|
rotMat3(2, 2) = w2 - x2 -y2 +z2; |
| 264 |
+ |
|
| 265 |
+ |
return rotMat3; |
| 266 |
|
} |
| 267 |
|
|
| 268 |
|
};//end Quaternion |
| 269 |
|
|
| 270 |
+ |
|
| 271 |
|
/** |
| 272 |
+ |
* Returns the vaule of scalar multiplication of this quaterion q (q * s). |
| 273 |
+ |
* @return the vaule of scalar multiplication of this vector |
| 274 |
+ |
* @param q the source quaternion |
| 275 |
+ |
* @param s the scalar value |
| 276 |
+ |
*/ |
| 277 |
+ |
template<typename Real, unsigned int Dim> |
| 278 |
+ |
Quaternion<Real> operator * ( const Quaternion<Real>& q, Real s) { |
| 279 |
+ |
Quaternion<Real> result(q); |
| 280 |
+ |
result.mul(s); |
| 281 |
+ |
return result; |
| 282 |
+ |
} |
| 283 |
+ |
|
| 284 |
+ |
/** |
| 285 |
+ |
* Returns the vaule of scalar multiplication of this quaterion q (q * s). |
| 286 |
+ |
* @return the vaule of scalar multiplication of this vector |
| 287 |
+ |
* @param s the scalar value |
| 288 |
+ |
* @param q the source quaternion |
| 289 |
+ |
*/ |
| 290 |
+ |
template<typename Real, unsigned int Dim> |
| 291 |
+ |
Quaternion<Real> operator * ( const Real& s, const Quaternion<Real>& q ) { |
| 292 |
+ |
Quaternion<Real> result(q); |
| 293 |
+ |
result.mul(s); |
| 294 |
+ |
return result; |
| 295 |
+ |
} |
| 296 |
+ |
|
| 297 |
+ |
/** |
| 298 |
|
* Returns the multiplication of two quaternion |
| 299 |
|
* @return the multiplication of two quaternion |
| 300 |
|
* @param q1 the first quaternion |
| 314 |
|
*/ |
| 315 |
|
|
| 316 |
|
template<typename Real> |
| 317 |
< |
inline Quaternion<Real> operator /(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { |
| 317 |
> |
inline Quaternion<Real> operator /( Quaternion<Real>& q1, Quaternion<Real>& q2) { |
| 318 |
|
return q1 * q2.inverse(); |
| 319 |
|
} |
| 320 |
|
|
| 326 |
|
* @note for a quaternion q, 1/q = q.inverse() |
| 327 |
|
*/ |
| 328 |
|
template<typename Real> |
| 329 |
< |
Quaternion<Real> operator /(const Quaternion<Real>& s, const Quaternion<Real>& q) { |
| 329 |
> |
Quaternion<Real> operator /(const Real& s, Quaternion<Real>& q) { |
| 330 |
|
|
| 331 |
< |
Quaternion<Real> x = q.inv(); |
| 332 |
< |
return x * s; |
| 331 |
> |
Quaternion<Real> x; |
| 332 |
> |
x = q.inverse(); |
| 333 |
> |
x *= s; |
| 334 |
> |
return x; |
| 335 |
|
} |
| 336 |
< |
|
| 336 |
> |
|
| 337 |
> |
template <class T> |
| 338 |
> |
inline bool operator==(const Quaternion<T>& lhs, const Quaternion<T>& rhs) { |
| 339 |
> |
return equal(lhs[0] ,rhs[0]) && equal(lhs[1] , rhs[1]) && equal(lhs[2], rhs[2]) && equal(lhs[3], rhs[3]); |
| 340 |
> |
} |
| 341 |
> |
|
| 342 |
|
typedef Quaternion<double> Quat4d; |
| 343 |
|
} |
| 344 |
|
#endif //MATH_QUATERNION_HPP |