| 1 | + | /* | 
| 2 | + | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | + | * | 
| 4 | + | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | + | * non-exclusive, royalty free, license to use, modify and | 
| 6 | + | * redistribute this software in source and binary code form, provided | 
| 7 | + | * that the following conditions are met: | 
| 8 | + | * | 
| 9 | + | * 1. Redistributions of source code must retain the above copyright | 
| 10 | + | *    notice, this list of conditions and the following disclaimer. | 
| 11 | + | * | 
| 12 | + | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | + | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | + | *    documentation and/or other materials provided with the | 
| 15 | + | *    distribution. | 
| 16 | + | * | 
| 17 | + | * This software is provided "AS IS," without a warranty of any | 
| 18 | + | * kind. All express or implied conditions, representations and | 
| 19 | + | * warranties, including any implied warranty of merchantability, | 
| 20 | + | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | + | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | + | * be liable for any damages suffered by licensee as a result of | 
| 23 | + | * using, modifying or distributing the software or its | 
| 24 | + | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | + | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | + | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | + | * damages, however caused and regardless of the theory of liability, | 
| 28 | + | * arising out of the use of or inability to use software, even if the | 
| 29 | + | * University of Notre Dame has been advised of the possibility of | 
| 30 | + | * such damages. | 
| 31 | + | * | 
| 32 | + | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | + | * research, please cite the appropriate papers when you publish your | 
| 34 | + | * work.  Good starting points are: | 
| 35 | + | * | 
| 36 | + | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | + | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | + | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | + | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 40 | + | */ | 
| 41 | + |  | 
| 42 |  | #include <stdio.h> | 
| 43 |  | #include <cmath> | 
| 44 | < |  | 
| 44 | > | #include <limits> | 
| 45 |  | #include "math/RealSphericalHarmonic.hpp" | 
| 46 |  |  | 
| 47 | < | using namespace oopse; | 
| 47 | > | using namespace OpenMD; | 
| 48 |  |  | 
| 49 |  | RealSphericalHarmonic::RealSphericalHarmonic() { | 
| 50 |  | } | 
| 51 |  |  | 
| 52 | < | double RealSphericalHarmonic::getValueAt(double costheta, double phi) { | 
| 52 | > | RealType RealSphericalHarmonic::getValueAt(RealType costheta, RealType phi) { | 
| 53 |  |  | 
| 54 | < | double p, phase; | 
| 54 | > | RealType p, phase; | 
| 55 |  |  | 
| 56 |  | // associated Legendre polynomial | 
| 57 |  | p = LegendreP(L,M,costheta); | 
| 58 | < |  | 
| 58 | > |  | 
| 59 |  | if (functionType == RSH_SIN) { | 
| 60 | < | phase = sin((double)M * phi); | 
| 60 | > | phase = sin((RealType)M * phi); | 
| 61 |  | } else { | 
| 62 | < | phase = cos((double)M * phi); | 
| 62 | > | phase = cos((RealType)M * phi); | 
| 63 |  | } | 
| 64 |  |  | 
| 65 |  | return coefficient*p*phase; | 
| 68 |  |  | 
| 69 |  | //---------------------------------------------------------------------------// | 
| 70 |  | // | 
| 71 | < | // double LegendreP (int l, int m, double x); | 
| 71 | > | // RealType LegendreP (int l, int m, RealType x); | 
| 72 |  | // | 
| 73 |  | // Computes the value of the associated Legendre polynomial P_lm (x) | 
| 74 |  | // of order l at a given point. | 
| 81 |  | //   value of the polynomial in x | 
| 82 |  | // | 
| 83 |  | //---------------------------------------------------------------------------// | 
| 84 | < | double RealSphericalHarmonic::LegendreP (int l, int m, double x) { | 
| 84 | > | RealType RealSphericalHarmonic::LegendreP (int l, int m, RealType x) { | 
| 85 |  | // check parameters | 
| 86 |  | if (m < 0 || m > l || fabs(x) > 1.0) { | 
| 87 |  | printf("LegendreP got a bad argument: l = %d\tm = %d\tx = %lf\n", l, m, x); | 
| 88 | < | return NAN; | 
| 88 | > | //    return NAN; | 
| 89 | > | return std::numeric_limits <RealType>:: quiet_NaN(); | 
| 90 |  | } | 
| 91 |  |  | 
| 92 | < | double pmm = 1.0; | 
| 92 | > | RealType pmm = 1.0; | 
| 93 |  | if (m > 0) { | 
| 94 | < | double h = sqrt((1.0-x)*(1.0+x)), | 
| 94 | > | RealType h = sqrt((1.0-x)*(1.0+x)), | 
| 95 |  | f = 1.0; | 
| 96 |  | for (int i = 1; i <= m; i++) { | 
| 97 |  | pmm *= -f * h; | 
| 101 |  | if (l == m) | 
| 102 |  | return pmm; | 
| 103 |  | else { | 
| 104 | < | double pmmp1 = x * (2 * m + 1) * pmm; | 
| 104 | > | RealType pmmp1 = x * (2 * m + 1) * pmm; | 
| 105 |  | if (l == (m+1)) | 
| 106 |  | return pmmp1; | 
| 107 |  | else { | 
| 108 | < | double pll = 0.0; | 
| 108 | > | RealType pll = 0.0; | 
| 109 |  | for (int ll = m+2; ll <= l; ll++) { | 
| 110 |  | pll = (x * (2 * ll - 1) * pmmp1 - (ll + m - 1) * pmm) / (ll - m); | 
| 111 |  | pmm = pmmp1; |