| 49 |
|
RealSphericalHarmonic::RealSphericalHarmonic() { |
| 50 |
|
} |
| 51 |
|
|
| 52 |
< |
double RealSphericalHarmonic::getValueAt(double costheta, double phi) { |
| 52 |
> |
RealType RealSphericalHarmonic::getValueAt(RealType costheta, RealType phi) { |
| 53 |
|
|
| 54 |
< |
double p, phase; |
| 54 |
> |
RealType p, phase; |
| 55 |
|
|
| 56 |
|
// associated Legendre polynomial |
| 57 |
|
p = LegendreP(L,M,costheta); |
| 58 |
|
|
| 59 |
|
if (functionType == RSH_SIN) { |
| 60 |
< |
phase = sin((double)M * phi); |
| 60 |
> |
phase = sin((RealType)M * phi); |
| 61 |
|
} else { |
| 62 |
< |
phase = cos((double)M * phi); |
| 62 |
> |
phase = cos((RealType)M * phi); |
| 63 |
|
} |
| 64 |
|
|
| 65 |
|
return coefficient*p*phase; |
| 68 |
|
|
| 69 |
|
//---------------------------------------------------------------------------// |
| 70 |
|
// |
| 71 |
< |
// double LegendreP (int l, int m, double x); |
| 71 |
> |
// RealType LegendreP (int l, int m, RealType x); |
| 72 |
|
// |
| 73 |
|
// Computes the value of the associated Legendre polynomial P_lm (x) |
| 74 |
|
// of order l at a given point. |
| 81 |
|
// value of the polynomial in x |
| 82 |
|
// |
| 83 |
|
//---------------------------------------------------------------------------// |
| 84 |
< |
double RealSphericalHarmonic::LegendreP (int l, int m, double x) { |
| 84 |
> |
RealType RealSphericalHarmonic::LegendreP (int l, int m, RealType x) { |
| 85 |
|
// check parameters |
| 86 |
|
if (m < 0 || m > l || fabs(x) > 1.0) { |
| 87 |
|
printf("LegendreP got a bad argument: l = %d\tm = %d\tx = %lf\n", l, m, x); |
| 88 |
|
// return NAN; |
| 89 |
< |
return std::numeric_limits <double>:: quiet_NaN(); |
| 89 |
> |
return std::numeric_limits <RealType>:: quiet_NaN(); |
| 90 |
|
} |
| 91 |
|
|
| 92 |
< |
double pmm = 1.0; |
| 92 |
> |
RealType pmm = 1.0; |
| 93 |
|
if (m > 0) { |
| 94 |
< |
double h = sqrt((1.0-x)*(1.0+x)), |
| 94 |
> |
RealType h = sqrt((1.0-x)*(1.0+x)), |
| 95 |
|
f = 1.0; |
| 96 |
|
for (int i = 1; i <= m; i++) { |
| 97 |
|
pmm *= -f * h; |
| 101 |
|
if (l == m) |
| 102 |
|
return pmm; |
| 103 |
|
else { |
| 104 |
< |
double pmmp1 = x * (2 * m + 1) * pmm; |
| 104 |
> |
RealType pmmp1 = x * (2 * m + 1) * pmm; |
| 105 |
|
if (l == (m+1)) |
| 106 |
|
return pmmp1; |
| 107 |
|
else { |
| 108 |
< |
double pll = 0.0; |
| 108 |
> |
RealType pll = 0.0; |
| 109 |
|
for (int ll = m+2; ll <= l; ll++) { |
| 110 |
|
pll = (x * (2 * ll - 1) * pmmp1 - (ll + m - 1) * pmm) / (ll - m); |
| 111 |
|
pmm = pmmp1; |