--- trunk/src/math/RealSphericalHarmonic.cpp 2005/01/12 22:41:40 246 +++ trunk/src/math/RealSphericalHarmonic.cpp 2010/05/10 17:28:26 1442 @@ -1,4 +1,4 @@ - /* +/* * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. * * The University of Notre Dame grants you ("Licensee") a @@ -6,19 +6,10 @@ * redistribute this software in source and binary code form, provided * that the following conditions are met: * - * 1. Acknowledgement of the program authors must be made in any - * publication of scientific results based in part on use of the - * program. An acceptable form of acknowledgement is citation of - * the article in which the program was described (Matthew - * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher - * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented - * Parallel Simulation Engine for Molecular Dynamics," - * J. Comput. Chem. 26, pp. 252-271 (2005)) - * - * 2. Redistributions of source code must retain the above copyright + * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - * 3. Redistributions in binary form must reproduce the above copyright + * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the * distribution. @@ -37,29 +28,38 @@ * arising out of the use of or inability to use software, even if the * University of Notre Dame has been advised of the possibility of * such damages. + * + * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your + * research, please cite the appropriate papers when you publish your + * work. Good starting points are: + * + * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). + * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). + * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). + * [4] Vardeman & Gezelter, in progress (2009). */ #include #include - +#include #include "math/RealSphericalHarmonic.hpp" -using namespace oopse; +using namespace OpenMD; RealSphericalHarmonic::RealSphericalHarmonic() { } -double RealSphericalHarmonic::getValueAt(double costheta, double phi) { +RealType RealSphericalHarmonic::getValueAt(RealType costheta, RealType phi) { - double p, phase; + RealType p, phase; // associated Legendre polynomial p = LegendreP(L,M,costheta); if (functionType == RSH_SIN) { - phase = sin((double)M * phi); + phase = sin((RealType)M * phi); } else { - phase = cos((double)M * phi); + phase = cos((RealType)M * phi); } return coefficient*p*phase; @@ -68,7 +68,7 @@ double RealSphericalHarmonic::getValueAt(double costhe //---------------------------------------------------------------------------// // -// double LegendreP (int l, int m, double x); +// RealType LegendreP (int l, int m, RealType x); // // Computes the value of the associated Legendre polynomial P_lm (x) // of order l at a given point. @@ -81,16 +81,17 @@ double RealSphericalHarmonic::getValueAt(double costhe // value of the polynomial in x // //---------------------------------------------------------------------------// -double RealSphericalHarmonic::LegendreP (int l, int m, double x) { +RealType RealSphericalHarmonic::LegendreP (int l, int m, RealType x) { // check parameters if (m < 0 || m > l || fabs(x) > 1.0) { printf("LegendreP got a bad argument: l = %d\tm = %d\tx = %lf\n", l, m, x); - return NAN; +// return NAN; + return std::numeric_limits :: quiet_NaN(); } - double pmm = 1.0; + RealType pmm = 1.0; if (m > 0) { - double h = sqrt((1.0-x)*(1.0+x)), + RealType h = sqrt((1.0-x)*(1.0+x)), f = 1.0; for (int i = 1; i <= m; i++) { pmm *= -f * h; @@ -100,11 +101,11 @@ double RealSphericalHarmonic::LegendreP (int l, int m, if (l == m) return pmm; else { - double pmmp1 = x * (2 * m + 1) * pmm; + RealType pmmp1 = x * (2 * m + 1) * pmm; if (l == (m+1)) return pmmp1; else { - double pll = 0.0; + RealType pll = 0.0; for (int ll = m+2; ll <= l; ll++) { pll = (x * (2 * ll - 1) * pmmp1 - (ll + m - 1) * pmm) / (ll - m); pmm = pmmp1;