| 1 |
/* |
| 2 |
* Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project |
| 3 |
* |
| 4 |
* Contact: oopse@oopse.org |
| 5 |
* |
| 6 |
* This program is free software; you can redistribute it and/or |
| 7 |
* modify it under the terms of the GNU Lesser General Public License |
| 8 |
* as published by the Free Software Foundation; either version 2.1 |
| 9 |
* of the License, or (at your option) any later version. |
| 10 |
* All we ask is that proper credit is given for our work, which includes |
| 11 |
* - but is not limited to - adding the above copyright notice to the beginning |
| 12 |
* of your source code files, and to any copyright notice that you may distribute |
| 13 |
* with programs based on this work. |
| 14 |
* |
| 15 |
* This program is distributed in the hope that it will be useful, |
| 16 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 17 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 18 |
* GNU Lesser General Public License for more details. |
| 19 |
* |
| 20 |
* You should have received a copy of the GNU Lesser General Public License |
| 21 |
* along with this program; if not, write to the Free Software |
| 22 |
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| 23 |
* |
| 24 |
*/ |
| 25 |
|
| 26 |
|
| 27 |
/** |
| 28 |
* @file RectMatrix.hpp |
| 29 |
* @author Teng Lin |
| 30 |
* @date 10/11/2004 |
| 31 |
* @version 1.0 |
| 32 |
*/ |
| 33 |
|
| 34 |
#ifndef MATH_RECTMATRIX_HPP |
| 35 |
#define MATH_RECTMATRIX_HPP |
| 36 |
|
| 37 |
#include "Vector.hpp" |
| 38 |
|
| 39 |
namespace oopse { |
| 40 |
|
| 41 |
template<typename T> |
| 42 |
inline bool equal(T e1, T e2) { |
| 43 |
return e1 == e2; |
| 44 |
} |
| 45 |
|
| 46 |
template<> |
| 47 |
inline bool equal(float e1, float e2) { |
| 48 |
return e1 == e2; |
| 49 |
} |
| 50 |
|
| 51 |
template<> |
| 52 |
inline bool equal(double e1, double e2) { |
| 53 |
return e1 == e2; |
| 54 |
} |
| 55 |
|
| 56 |
/** |
| 57 |
* @class RectMatrix RectMatrix.hpp "math/RectMatrix.hpp" |
| 58 |
* @brief rectangular matrix class |
| 59 |
*/ |
| 60 |
template<typename Real, unsigned int Row, unsigned int Col> |
| 61 |
class RectMatrix { |
| 62 |
public: |
| 63 |
|
| 64 |
/** default constructor */ |
| 65 |
RectMatrix() { |
| 66 |
for (unsigned int i = 0; i < Row; i++) |
| 67 |
for (unsigned int j = 0; j < Col; j++) |
| 68 |
data_[i][j] = 0.0; |
| 69 |
} |
| 70 |
|
| 71 |
/** Constructs and initializes every element of this matrix to a scalar */ |
| 72 |
RectMatrix(Real s) { |
| 73 |
for (unsigned int i = 0; i < Row; i++) |
| 74 |
for (unsigned int j = 0; j < Col; j++) |
| 75 |
data_[i][j] = s; |
| 76 |
} |
| 77 |
|
| 78 |
/** copy constructor */ |
| 79 |
RectMatrix(const RectMatrix<Real, Row, Col>& m) { |
| 80 |
*this = m; |
| 81 |
} |
| 82 |
|
| 83 |
/** destructor*/ |
| 84 |
~RectMatrix() {} |
| 85 |
|
| 86 |
/** copy assignment operator */ |
| 87 |
RectMatrix<Real, Row, Col>& operator =(const RectMatrix<Real, Row, Col>& m) { |
| 88 |
if (this == &m) |
| 89 |
return *this; |
| 90 |
|
| 91 |
for (unsigned int i = 0; i < Row; i++) |
| 92 |
for (unsigned int j = 0; j < Col; j++) |
| 93 |
data_[i][j] = m.data_[i][j]; |
| 94 |
return *this; |
| 95 |
} |
| 96 |
|
| 97 |
/** |
| 98 |
* Return the reference of a single element of this matrix. |
| 99 |
* @return the reference of a single element of this matrix |
| 100 |
* @param i row index |
| 101 |
* @param j colum index |
| 102 |
*/ |
| 103 |
double& operator()(unsigned int i, unsigned int j) { |
| 104 |
//assert( i < Row && j < Col); |
| 105 |
return data_[i][j]; |
| 106 |
} |
| 107 |
|
| 108 |
/** |
| 109 |
* Return the value of a single element of this matrix. |
| 110 |
* @return the value of a single element of this matrix |
| 111 |
* @param i row index |
| 112 |
* @param j colum index |
| 113 |
*/ |
| 114 |
double operator()(unsigned int i, unsigned int j) const { |
| 115 |
|
| 116 |
return data_[i][j]; |
| 117 |
} |
| 118 |
|
| 119 |
/** |
| 120 |
* Returns a row of this matrix as a vector. |
| 121 |
* @return a row of this matrix as a vector |
| 122 |
* @param row the row index |
| 123 |
*/ |
| 124 |
Vector<Real, Row> getRow(unsigned int row) { |
| 125 |
Vector<Real, Row> v; |
| 126 |
|
| 127 |
for (unsigned int i = 0; i < Row; i++) |
| 128 |
v[i] = data_[row][i]; |
| 129 |
|
| 130 |
return v; |
| 131 |
} |
| 132 |
|
| 133 |
/** |
| 134 |
* Sets a row of this matrix |
| 135 |
* @param row the row index |
| 136 |
* @param v the vector to be set |
| 137 |
*/ |
| 138 |
void setRow(unsigned int row, const Vector<Real, Row>& v) { |
| 139 |
|
| 140 |
for (unsigned int i = 0; i < Row; i++) |
| 141 |
data_[row][i] = v[i]; |
| 142 |
} |
| 143 |
|
| 144 |
/** |
| 145 |
* Returns a column of this matrix as a vector. |
| 146 |
* @return a column of this matrix as a vector |
| 147 |
* @param col the column index |
| 148 |
*/ |
| 149 |
Vector<Real, Col> getColum(unsigned int col) { |
| 150 |
Vector<Real, Col> v; |
| 151 |
|
| 152 |
for (unsigned int j = 0; j < Col; j++) |
| 153 |
v[j] = data_[j][col]; |
| 154 |
|
| 155 |
return v; |
| 156 |
} |
| 157 |
|
| 158 |
/** |
| 159 |
* Sets a column of this matrix |
| 160 |
* @param col the column index |
| 161 |
* @param v the vector to be set |
| 162 |
*/ |
| 163 |
void setColum(unsigned int col, const Vector<Real, Col>& v){ |
| 164 |
|
| 165 |
for (unsigned int j = 0; j < Col; j++) |
| 166 |
data_[j][col] = v[j]; |
| 167 |
} |
| 168 |
|
| 169 |
/** |
| 170 |
* Tests if this matrix is identical to matrix m |
| 171 |
* @return true if this matrix is equal to the matrix m, return false otherwise |
| 172 |
* @m matrix to be compared |
| 173 |
* |
| 174 |
* @todo replace operator == by template function equal |
| 175 |
*/ |
| 176 |
bool operator ==(const RectMatrix<Real, Row, Col>& m) { |
| 177 |
for (unsigned int i = 0; i < Row; i++) |
| 178 |
for (unsigned int j = 0; j < Col; j++) |
| 179 |
if (!equal(data_[i][j], m.data_[i][j])) |
| 180 |
return false; |
| 181 |
|
| 182 |
return true; |
| 183 |
} |
| 184 |
|
| 185 |
/** |
| 186 |
* Tests if this matrix is not equal to matrix m |
| 187 |
* @return true if this matrix is not equal to the matrix m, return false otherwise |
| 188 |
* @m matrix to be compared |
| 189 |
*/ |
| 190 |
bool operator !=(const RectMatrix<Real, Row, Col>& m) { |
| 191 |
return !(*this == m); |
| 192 |
} |
| 193 |
|
| 194 |
/** Negates the value of this matrix in place. */ |
| 195 |
inline void negate() { |
| 196 |
for (unsigned int i = 0; i < Row; i++) |
| 197 |
for (unsigned int j = 0; j < Col; j++) |
| 198 |
data_[i][j] = -data_[i][j]; |
| 199 |
} |
| 200 |
|
| 201 |
/** |
| 202 |
* Sets the value of this matrix to the negation of matrix m. |
| 203 |
* @param m the source matrix |
| 204 |
*/ |
| 205 |
inline void negate(const RectMatrix<Real, Row, Col>& m) { |
| 206 |
for (unsigned int i = 0; i < Row; i++) |
| 207 |
for (unsigned int j = 0; j < Col; j++) |
| 208 |
data_[i][j] = -m.data_[i][j]; |
| 209 |
} |
| 210 |
|
| 211 |
/** |
| 212 |
* Sets the value of this matrix to the sum of itself and m (*this += m). |
| 213 |
* @param m the other matrix |
| 214 |
*/ |
| 215 |
inline void add( const RectMatrix<Real, Row, Col>& m ) { |
| 216 |
for (unsigned int i = 0; i < Row; i++) |
| 217 |
for (unsigned int j = 0; j < Col; j++) |
| 218 |
data_[i][j] += m.data_[i][j]; |
| 219 |
} |
| 220 |
|
| 221 |
/** |
| 222 |
* Sets the value of this matrix to the sum of m1 and m2 (*this = m1 + m2). |
| 223 |
* @param m1 the first matrix |
| 224 |
* @param m2 the second matrix |
| 225 |
*/ |
| 226 |
inline void add( const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2 ) { |
| 227 |
for (unsigned int i = 0; i < Row; i++) |
| 228 |
for (unsigned int j = 0; j < Col; j++) |
| 229 |
data_[i][j] = m1.data_[i][j] + m2.data_[i][j]; |
| 230 |
} |
| 231 |
|
| 232 |
/** |
| 233 |
* Sets the value of this matrix to the difference of itself and m (*this -= m). |
| 234 |
* @param m the other matrix |
| 235 |
*/ |
| 236 |
inline void sub( const RectMatrix<Real, Row, Col>& m ) { |
| 237 |
for (unsigned int i = 0; i < Row; i++) |
| 238 |
for (unsigned int j = 0; j < Col; j++) |
| 239 |
data_[i][j] -= m.data_[i][j]; |
| 240 |
} |
| 241 |
|
| 242 |
/** |
| 243 |
* Sets the value of this matrix to the difference of matrix m1 and m2 (*this = m1 - m2). |
| 244 |
* @param m1 the first matrix |
| 245 |
* @param m2 the second matrix |
| 246 |
*/ |
| 247 |
inline void sub( const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2){ |
| 248 |
for (unsigned int i = 0; i < Row; i++) |
| 249 |
for (unsigned int j = 0; j < Col; j++) |
| 250 |
data_[i][j] = m1.data_[i][j] - m2.data_[i][j]; |
| 251 |
} |
| 252 |
|
| 253 |
/** |
| 254 |
* Sets the value of this matrix to the scalar multiplication of itself (*this *= s). |
| 255 |
* @param s the scalar value |
| 256 |
*/ |
| 257 |
inline void mul( double s ) { |
| 258 |
for (unsigned int i = 0; i < Row; i++) |
| 259 |
for (unsigned int j = 0; j < Col; j++) |
| 260 |
data_[i][j] *= s; |
| 261 |
} |
| 262 |
|
| 263 |
/** |
| 264 |
* Sets the value of this matrix to the scalar multiplication of matrix m (*this = s * m). |
| 265 |
* @param s the scalar value |
| 266 |
* @param m the matrix |
| 267 |
*/ |
| 268 |
inline void mul( double s, const RectMatrix<Real, Row, Col>& m ) { |
| 269 |
for (unsigned int i = 0; i < Row; i++) |
| 270 |
for (unsigned int j = 0; j < Col; j++) |
| 271 |
data_[i][j] = s * m.data_[i][j]; |
| 272 |
} |
| 273 |
|
| 274 |
/** |
| 275 |
* Sets the value of this matrix to the scalar division of itself (*this /= s ). |
| 276 |
* @param s the scalar value |
| 277 |
*/ |
| 278 |
inline void div( double s) { |
| 279 |
for (unsigned int i = 0; i < Row; i++) |
| 280 |
for (unsigned int j = 0; j < Col; j++) |
| 281 |
data_[i][j] /= s; |
| 282 |
} |
| 283 |
|
| 284 |
/** |
| 285 |
* Sets the value of this matrix to the scalar division of matrix m (*this = m /s). |
| 286 |
* @param s the scalar value |
| 287 |
* @param m the matrix |
| 288 |
*/ |
| 289 |
inline void div( double s, const RectMatrix<Real, Row, Col>& m ) { |
| 290 |
for (unsigned int i = 0; i < Row; i++) |
| 291 |
for (unsigned int j = 0; j < Col; j++) |
| 292 |
data_[i][j] = m.data_[i][j] / s; |
| 293 |
} |
| 294 |
|
| 295 |
/** |
| 296 |
* Multiples a scalar into every element of this matrix. |
| 297 |
* @param s the scalar value |
| 298 |
*/ |
| 299 |
RectMatrix<Real, Row, Col>& operator *=(const double s) { |
| 300 |
this->mul(s); |
| 301 |
return *this; |
| 302 |
} |
| 303 |
|
| 304 |
/** |
| 305 |
* Divides every element of this matrix by a scalar. |
| 306 |
* @param s the scalar value |
| 307 |
*/ |
| 308 |
RectMatrix<Real, Row, Col>& operator /=(const double s) { |
| 309 |
this->div(s); |
| 310 |
return *this; |
| 311 |
} |
| 312 |
|
| 313 |
/** |
| 314 |
* Sets the value of this matrix to the sum of the other matrix and itself (*this += m). |
| 315 |
* @param m the other matrix |
| 316 |
*/ |
| 317 |
RectMatrix<Real, Row, Col>& operator += (const RectMatrix<Real, Row, Col>& m) { |
| 318 |
add(m); |
| 319 |
return *this; |
| 320 |
} |
| 321 |
|
| 322 |
/** |
| 323 |
* Sets the value of this matrix to the differerence of itself and the other matrix (*this -= m) |
| 324 |
* @param m the other matrix |
| 325 |
*/ |
| 326 |
RectMatrix<Real, Row, Col>& operator -= (const RectMatrix<Real, Row, Col>& m){ |
| 327 |
sub(m); |
| 328 |
return *this; |
| 329 |
} |
| 330 |
|
| 331 |
/** Return the transpose of this matrix */ |
| 332 |
RectMatrix<Real, Col, Row> transpose(){ |
| 333 |
RectMatrix<Real, Col, Row> result; |
| 334 |
|
| 335 |
for (unsigned int i = 0; i < Row; i++) |
| 336 |
for (unsigned int j = 0; j < Col; j++) |
| 337 |
result(j, i) = data_[i][j]; |
| 338 |
|
| 339 |
return result; |
| 340 |
} |
| 341 |
|
| 342 |
protected: |
| 343 |
Real data_[Row][Col]; |
| 344 |
}; |
| 345 |
|
| 346 |
/** Negate the value of every element of this matrix. */ |
| 347 |
template<typename Real, unsigned int Row, unsigned int Col> |
| 348 |
inline RectMatrix<Real, Row, Col> operator -(const RectMatrix<Real, Row, Col>& m) { |
| 349 |
RectMatrix<Real, Row, Col> result(m); |
| 350 |
|
| 351 |
result.negate(); |
| 352 |
|
| 353 |
return result; |
| 354 |
} |
| 355 |
|
| 356 |
/** |
| 357 |
* Return the sum of two matrixes (m1 + m2). |
| 358 |
* @return the sum of two matrixes |
| 359 |
* @param m1 the first matrix |
| 360 |
* @param m2 the second matrix |
| 361 |
*/ |
| 362 |
template<typename Real, unsigned int Row, unsigned int Col> |
| 363 |
inline RectMatrix<Real, Row, Col> operator + (const RectMatrix<Real, Row, Col>& m1,const RectMatrix<Real, Row, Col>& m2) { |
| 364 |
RectMatrix<Real, Row, Col> result; |
| 365 |
|
| 366 |
result.add(m1, m2); |
| 367 |
|
| 368 |
return result; |
| 369 |
} |
| 370 |
|
| 371 |
/** |
| 372 |
* Return the difference of two matrixes (m1 - m2). |
| 373 |
* @return the sum of two matrixes |
| 374 |
* @param m1 the first matrix |
| 375 |
* @param m2 the second matrix |
| 376 |
*/ |
| 377 |
template<typename Real, unsigned int Row, unsigned int Col> |
| 378 |
inline RectMatrix<Real, Row, Col> operator - (const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2) { |
| 379 |
RectMatrix<Real, Row, Col> result; |
| 380 |
|
| 381 |
result.sub(m1, m2); |
| 382 |
|
| 383 |
return result; |
| 384 |
} |
| 385 |
|
| 386 |
/** |
| 387 |
* Return the multiplication of scalra and matrix (m * s). |
| 388 |
* @return the multiplication of a scalra and a matrix |
| 389 |
* @param m the matrix |
| 390 |
* @param s the scalar |
| 391 |
*/ |
| 392 |
template<typename Real, unsigned int Row, unsigned int Col> |
| 393 |
inline RectMatrix<Real, Row, Col> operator *(const RectMatrix<Real, Row, Col>& m, Real s) { |
| 394 |
RectMatrix<Real, Row, Col> result; |
| 395 |
|
| 396 |
result.mul(s, m); |
| 397 |
|
| 398 |
return result; |
| 399 |
} |
| 400 |
|
| 401 |
/** |
| 402 |
* Return the multiplication of a scalra and a matrix (s * m). |
| 403 |
* @return the multiplication of a scalra and a matrix |
| 404 |
* @param s the scalar |
| 405 |
* @param m the matrix |
| 406 |
*/ |
| 407 |
template<typename Real, unsigned int Row, unsigned int Col> |
| 408 |
inline RectMatrix<Real, Row, Col> operator *(Real s, const RectMatrix<Real, Row, Col>& m) { |
| 409 |
RectMatrix<Real, Row, Col> result; |
| 410 |
|
| 411 |
result.mul(s, m); |
| 412 |
|
| 413 |
return result; |
| 414 |
} |
| 415 |
|
| 416 |
/** |
| 417 |
* Return the multiplication of two matrixes (m1 * m2). |
| 418 |
* @return the multiplication of two matrixes |
| 419 |
* @param m1 the first matrix |
| 420 |
* @param m2 the second matrix |
| 421 |
*/ |
| 422 |
template<typename Real, unsigned int Row, unsigned int Col, unsigned int SameDim> |
| 423 |
inline RectMatrix<Real, Row, Col> operator *(const RectMatrix<Real, Row, SameDim>& m1, const RectMatrix<Real, SameDim, Col>& m2) { |
| 424 |
RectMatrix<Real, Row, Col> result; |
| 425 |
|
| 426 |
for (unsigned int i = 0; i < Row; i++) |
| 427 |
for (unsigned int j = 0; j < Col; j++) |
| 428 |
for (unsigned int k = 0; k < SameDim; k++) |
| 429 |
result(i, j) = m1(i, k) * m2(k, j); |
| 430 |
|
| 431 |
return result; |
| 432 |
} |
| 433 |
|
| 434 |
/** |
| 435 |
* Return the multiplication of a matrix and a vector (m * v). |
| 436 |
* @return the multiplication of a matrix and a vector |
| 437 |
* @param m the matrix |
| 438 |
* @param v the vector |
| 439 |
*/ |
| 440 |
template<typename Real, unsigned int Row, unsigned int Col> |
| 441 |
inline Vector<Real, Row> operator *(const RectMatrix<Real, Row, Col>& m, const Vector<Real, Col>& v) { |
| 442 |
Vector<Real, Row> result; |
| 443 |
|
| 444 |
for (unsigned int i = 0; i < Row ; i++) |
| 445 |
for (unsigned int j = 0; j < Col ; j++) |
| 446 |
result[i] += m(i, j) * v[j]; |
| 447 |
|
| 448 |
return result; |
| 449 |
} |
| 450 |
|
| 451 |
/** |
| 452 |
* Return the scalar division of matrix (m / s). |
| 453 |
* @return the scalar division of matrix |
| 454 |
* @param m the matrix |
| 455 |
* @param s the scalar |
| 456 |
*/ |
| 457 |
template<typename Real, unsigned int Row, unsigned int Col> |
| 458 |
inline RectMatrix<Real, Row, Col> operator /(const RectMatrix<Real, Row, Col>& m, Real s) { |
| 459 |
RectMatrix<Real, Row, Col> result; |
| 460 |
|
| 461 |
result.div(s, m); |
| 462 |
|
| 463 |
return result; |
| 464 |
} |
| 465 |
} |
| 466 |
#endif //MATH_RECTMATRIX_HPP |