| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 40 | */ | 
| 41 |  | 
| 42 | /** | 
| 43 | * @file RectMatrix.hpp | 
| 44 | * @author Teng Lin | 
| 45 | * @date 10/11/2004 | 
| 46 | * @version 1.0 | 
| 47 | */ | 
| 48 |  | 
| 49 | #ifndef MATH_RECTMATRIX_HPP | 
| 50 | #define MATH_RECTMATRIX_HPP | 
| 51 | #include <math.h> | 
| 52 | #include <cmath> | 
| 53 | #include "Vector.hpp" | 
| 54 |  | 
| 55 | namespace OpenMD { | 
| 56 |  | 
| 57 | /** | 
| 58 | * @class RectMatrix RectMatrix.hpp "math/RectMatrix.hpp" | 
| 59 | * @brief rectangular matrix class | 
| 60 | */ | 
| 61 | template<typename Real, unsigned int Row, unsigned int Col> | 
| 62 | class RectMatrix { | 
| 63 | public: | 
| 64 | typedef Real ElemType; | 
| 65 | typedef Real* ElemPoinerType; | 
| 66 |  | 
| 67 | /** default constructor */ | 
| 68 | RectMatrix() { | 
| 69 | for (unsigned int i = 0; i < Row; i++) | 
| 70 | for (unsigned int j = 0; j < Col; j++) | 
| 71 | this->data_[i][j] = 0.0; | 
| 72 | } | 
| 73 |  | 
| 74 | /** Constructs and initializes every element of this matrix to a scalar */ | 
| 75 | RectMatrix(Real s) { | 
| 76 | for (unsigned int i = 0; i < Row; i++) | 
| 77 | for (unsigned int j = 0; j < Col; j++) | 
| 78 | this->data_[i][j] = s; | 
| 79 | } | 
| 80 |  | 
| 81 | RectMatrix(Real* array) { | 
| 82 | for (unsigned int i = 0; i < Row; i++) | 
| 83 | for (unsigned int j = 0; j < Col; j++) | 
| 84 | this->data_[i][j] = array[i * Row + j]; | 
| 85 | } | 
| 86 |  | 
| 87 | /** copy constructor */ | 
| 88 | RectMatrix(const RectMatrix<Real, Row, Col>& m) { | 
| 89 | *this = m; | 
| 90 | } | 
| 91 |  | 
| 92 | /** destructor*/ | 
| 93 | ~RectMatrix() {} | 
| 94 |  | 
| 95 | /** copy assignment operator */ | 
| 96 | RectMatrix<Real, Row, Col>& operator =(const RectMatrix<Real, Row, Col>& m) { | 
| 97 | if (this == &m) | 
| 98 | return *this; | 
| 99 |  | 
| 100 | for (unsigned int i = 0; i < Row; i++) | 
| 101 | for (unsigned int j = 0; j < Col; j++) | 
| 102 | this->data_[i][j] = m.data_[i][j]; | 
| 103 | return *this; | 
| 104 | } | 
| 105 |  | 
| 106 | /** | 
| 107 | * Return the reference of a single element of this matrix. | 
| 108 | * @return the reference of a single element of this matrix | 
| 109 | * @param i row index | 
| 110 | * @param j Column index | 
| 111 | */ | 
| 112 | Real& operator()(unsigned int i, unsigned int j) { | 
| 113 | //assert( i < Row && j < Col); | 
| 114 | return this->data_[i][j]; | 
| 115 | } | 
| 116 |  | 
| 117 | /** | 
| 118 | * Return the value of a single element of this matrix. | 
| 119 | * @return the value of a single element of this matrix | 
| 120 | * @param i row index | 
| 121 | * @param j Column index | 
| 122 | */ | 
| 123 | Real operator()(unsigned int i, unsigned int j) const  { | 
| 124 |  | 
| 125 | return this->data_[i][j]; | 
| 126 | } | 
| 127 |  | 
| 128 | /** | 
| 129 | * Copy the internal data to an array | 
| 130 | * @param array the pointer of destination array | 
| 131 | */ | 
| 132 | void getArray(Real* array) { | 
| 133 | for (unsigned int i = 0; i < Row; i++) { | 
| 134 | for (unsigned int j = 0; j < Col; j++) { | 
| 135 | array[i * Row + j] = this->data_[i][j]; | 
| 136 | } | 
| 137 | } | 
| 138 | } | 
| 139 |  | 
| 140 |  | 
| 141 | /** Returns the pointer of internal array */ | 
| 142 | Real* getArrayPointer() { | 
| 143 | return &this->data_[0][0]; | 
| 144 | } | 
| 145 |  | 
| 146 | /** | 
| 147 | * Returns a row of  this matrix as a vector. | 
| 148 | * @return a row of  this matrix as a vector | 
| 149 | * @param row the row index | 
| 150 | */ | 
| 151 | Vector<Real, Row> getRow(unsigned int row) { | 
| 152 | Vector<Real, Row> v; | 
| 153 |  | 
| 154 | for (unsigned int i = 0; i < Col; i++) | 
| 155 | v[i] = this->data_[row][i]; | 
| 156 |  | 
| 157 | return v; | 
| 158 | } | 
| 159 |  | 
| 160 | /** | 
| 161 | * Sets a row of  this matrix | 
| 162 | * @param row the row index | 
| 163 | * @param v the vector to be set | 
| 164 | */ | 
| 165 | void setRow(unsigned int row, const Vector<Real, Row>& v) { | 
| 166 |  | 
| 167 | for (unsigned int i = 0; i < Col; i++) | 
| 168 | this->data_[row][i] = v[i]; | 
| 169 | } | 
| 170 |  | 
| 171 | /** | 
| 172 | * Returns a column of  this matrix as a vector. | 
| 173 | * @return a column of  this matrix as a vector | 
| 174 | * @param col the column index | 
| 175 | */ | 
| 176 | Vector<Real, Col> getColumn(unsigned int col) { | 
| 177 | Vector<Real, Col> v; | 
| 178 |  | 
| 179 | for (unsigned int j = 0; j < Row; j++) | 
| 180 | v[j] = this->data_[j][col]; | 
| 181 |  | 
| 182 | return v; | 
| 183 | } | 
| 184 |  | 
| 185 | /** | 
| 186 | * Sets a column of  this matrix | 
| 187 | * @param col the column index | 
| 188 | * @param v the vector to be set | 
| 189 | */ | 
| 190 | void setColumn(unsigned int col, const Vector<Real, Col>& v){ | 
| 191 |  | 
| 192 | for (unsigned int j = 0; j < Row; j++) | 
| 193 | this->data_[j][col] = v[j]; | 
| 194 | } | 
| 195 |  | 
| 196 | /** | 
| 197 | * swap two rows of this matrix | 
| 198 | * @param i the first row | 
| 199 | * @param j the second row | 
| 200 | */ | 
| 201 | void swapRow(unsigned int i, unsigned int j){ | 
| 202 | assert(i < Row && j < Row); | 
| 203 |  | 
| 204 | for (unsigned int k = 0; k < Col; k++) | 
| 205 | std::swap(this->data_[i][k], this->data_[j][k]); | 
| 206 | } | 
| 207 |  | 
| 208 | /** | 
| 209 | * swap two Columns of this matrix | 
| 210 | * @param i the first Column | 
| 211 | * @param j the second Column | 
| 212 | */ | 
| 213 | void swapColumn(unsigned int i, unsigned int j){ | 
| 214 | assert(i < Col && j < Col); | 
| 215 |  | 
| 216 | for (unsigned int k = 0; k < Row; k++) | 
| 217 | std::swap(this->data_[k][i], this->data_[k][j]); | 
| 218 | } | 
| 219 |  | 
| 220 | /** | 
| 221 | * Tests if this matrix is identical to matrix m | 
| 222 | * @return true if this matrix is equal to the matrix m, return false otherwise | 
| 223 | * @m matrix to be compared | 
| 224 | * | 
| 225 | * @todo replace operator == by template function equal | 
| 226 | */ | 
| 227 | bool operator ==(const RectMatrix<Real, Row, Col>& m) { | 
| 228 | for (unsigned int i = 0; i < Row; i++) | 
| 229 | for (unsigned int j = 0; j < Col; j++) | 
| 230 | if (!equal(this->data_[i][j], m.data_[i][j])) | 
| 231 | return false; | 
| 232 |  | 
| 233 | return true; | 
| 234 | } | 
| 235 |  | 
| 236 | /** | 
| 237 | * Tests if this matrix is not equal to matrix m | 
| 238 | * @return true if this matrix is not equal to the matrix m, return false otherwise | 
| 239 | * @m matrix to be compared | 
| 240 | */ | 
| 241 | bool operator !=(const RectMatrix<Real, Row, Col>& m) { | 
| 242 | return !(*this == m); | 
| 243 | } | 
| 244 |  | 
| 245 | /** Negates the value of this matrix in place. */ | 
| 246 | inline void negate() { | 
| 247 | for (unsigned int i = 0; i < Row; i++) | 
| 248 | for (unsigned int j = 0; j < Col; j++) | 
| 249 | this->data_[i][j] = -this->data_[i][j]; | 
| 250 | } | 
| 251 |  | 
| 252 | /** | 
| 253 | * Sets the value of this matrix to the negation of matrix m. | 
| 254 | * @param m the source matrix | 
| 255 | */ | 
| 256 | inline void negate(const RectMatrix<Real, Row, Col>& m) { | 
| 257 | for (unsigned int i = 0; i < Row; i++) | 
| 258 | for (unsigned int j = 0; j < Col; j++) | 
| 259 | this->data_[i][j] = -m.data_[i][j]; | 
| 260 | } | 
| 261 |  | 
| 262 | /** | 
| 263 | * Sets the value of this matrix to the sum of itself and m (*this += m). | 
| 264 | * @param m the other matrix | 
| 265 | */ | 
| 266 | inline void add( const RectMatrix<Real, Row, Col>& m ) { | 
| 267 | for (unsigned int i = 0; i < Row; i++) | 
| 268 | for (unsigned int j = 0; j < Col; j++) | 
| 269 | this->data_[i][j] += m.data_[i][j]; | 
| 270 | } | 
| 271 |  | 
| 272 | /** | 
| 273 | * Sets the value of this matrix to the sum of m1 and m2 (*this = m1 + m2). | 
| 274 | * @param m1 the first matrix | 
| 275 | * @param m2 the second matrix | 
| 276 | */ | 
| 277 | inline void add( const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2 ) { | 
| 278 | for (unsigned int i = 0; i < Row; i++) | 
| 279 | for (unsigned int j = 0; j < Col; j++) | 
| 280 | this->data_[i][j] = m1.data_[i][j] + m2.data_[i][j]; | 
| 281 | } | 
| 282 |  | 
| 283 | /** | 
| 284 | * Sets the value of this matrix to the difference  of itself and m (*this -= m). | 
| 285 | * @param m the other matrix | 
| 286 | */ | 
| 287 | inline void sub( const RectMatrix<Real, Row, Col>& m ) { | 
| 288 | for (unsigned int i = 0; i < Row; i++) | 
| 289 | for (unsigned int j = 0; j < Col; j++) | 
| 290 | this->data_[i][j] -= m.data_[i][j]; | 
| 291 | } | 
| 292 |  | 
| 293 | /** | 
| 294 | * Sets the value of this matrix to the difference of matrix m1 and m2 (*this = m1 - m2). | 
| 295 | * @param m1 the first matrix | 
| 296 | * @param m2 the second matrix | 
| 297 | */ | 
| 298 | inline void sub( const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2){ | 
| 299 | for (unsigned int i = 0; i < Row; i++) | 
| 300 | for (unsigned int j = 0; j < Col; j++) | 
| 301 | this->data_[i][j] = m1.data_[i][j] - m2.data_[i][j]; | 
| 302 | } | 
| 303 |  | 
| 304 | /** | 
| 305 | * Sets the value of this matrix to the scalar multiplication of itself (*this *= s). | 
| 306 | * @param s the scalar value | 
| 307 | */ | 
| 308 | inline void mul( Real s ) { | 
| 309 | for (unsigned int i = 0; i < Row; i++) | 
| 310 | for (unsigned int j = 0; j < Col; j++) | 
| 311 | this->data_[i][j] *= s; | 
| 312 | } | 
| 313 |  | 
| 314 | /** | 
| 315 | * Sets the value of this matrix to the scalar multiplication of matrix m  (*this = s * m). | 
| 316 | * @param s the scalar value | 
| 317 | * @param m the matrix | 
| 318 | */ | 
| 319 | inline void mul( Real s, const RectMatrix<Real, Row, Col>& m ) { | 
| 320 | for (unsigned int i = 0; i < Row; i++) | 
| 321 | for (unsigned int j = 0; j < Col; j++) | 
| 322 | this->data_[i][j] = s * m.data_[i][j]; | 
| 323 | } | 
| 324 |  | 
| 325 | /** | 
| 326 | * Sets the value of this matrix to the scalar division of itself  (*this /= s ). | 
| 327 | * @param s the scalar value | 
| 328 | */ | 
| 329 | inline void div( Real s) { | 
| 330 | for (unsigned int i = 0; i < Row; i++) | 
| 331 | for (unsigned int j = 0; j < Col; j++) | 
| 332 | this->data_[i][j] /= s; | 
| 333 | } | 
| 334 |  | 
| 335 | /** | 
| 336 | * Sets the value of this matrix to the scalar division of matrix m  (*this = m /s). | 
| 337 | * @param s the scalar value | 
| 338 | * @param m the matrix | 
| 339 | */ | 
| 340 | inline void div( Real s, const RectMatrix<Real, Row, Col>& m ) { | 
| 341 | for (unsigned int i = 0; i < Row; i++) | 
| 342 | for (unsigned int j = 0; j < Col; j++) | 
| 343 | this->data_[i][j] = m.data_[i][j] / s; | 
| 344 | } | 
| 345 |  | 
| 346 | /** | 
| 347 | *  Multiples a scalar into every element of this matrix. | 
| 348 | * @param s the scalar value | 
| 349 | */ | 
| 350 | RectMatrix<Real, Row, Col>& operator *=(const Real s) { | 
| 351 | this->mul(s); | 
| 352 | return *this; | 
| 353 | } | 
| 354 |  | 
| 355 | /** | 
| 356 | *  Divides every element of this matrix by a scalar. | 
| 357 | * @param s the scalar value | 
| 358 | */ | 
| 359 | RectMatrix<Real, Row, Col>& operator /=(const Real s) { | 
| 360 | this->div(s); | 
| 361 | return *this; | 
| 362 | } | 
| 363 |  | 
| 364 | /** | 
| 365 | * Sets the value of this matrix to the sum of the other matrix and itself (*this += m). | 
| 366 | * @param m the other matrix | 
| 367 | */ | 
| 368 | RectMatrix<Real, Row, Col>& operator += (const RectMatrix<Real, Row, Col>& m) { | 
| 369 | add(m); | 
| 370 | return *this; | 
| 371 | } | 
| 372 |  | 
| 373 | /** | 
| 374 | * Sets the value of this matrix to the differerence of itself and the other matrix (*this -= m) | 
| 375 | * @param m the other matrix | 
| 376 | */ | 
| 377 | RectMatrix<Real, Row, Col>& operator -= (const RectMatrix<Real, Row, Col>& m){ | 
| 378 | sub(m); | 
| 379 | return *this; | 
| 380 | } | 
| 381 |  | 
| 382 | /** Return the transpose of this matrix */ | 
| 383 | RectMatrix<Real,  Col, Row> transpose() const{ | 
| 384 | RectMatrix<Real,  Col, Row> result; | 
| 385 |  | 
| 386 | for (unsigned int i = 0; i < Row; i++) | 
| 387 | for (unsigned int j = 0; j < Col; j++) | 
| 388 | result(j, i) = this->data_[i][j]; | 
| 389 |  | 
| 390 | return result; | 
| 391 | } | 
| 392 |  | 
| 393 | template<class MatrixType> | 
| 394 | void setSubMatrix(unsigned int beginRow, unsigned int beginCol, const MatrixType& m) { | 
| 395 | assert(beginRow + m.getNRow() -1 <= getNRow()); | 
| 396 | assert(beginCol + m.getNCol() -1 <= getNCol()); | 
| 397 |  | 
| 398 | for (unsigned int i = 0; i < m.getNRow(); ++i) | 
| 399 | for (unsigned int j = 0; j < m.getNCol(); ++j) | 
| 400 | this->data_[beginRow+i][beginCol+j] = m(i, j); | 
| 401 | } | 
| 402 |  | 
| 403 | template<class MatrixType> | 
| 404 | void getSubMatrix(unsigned int beginRow, unsigned int beginCol, MatrixType& m) { | 
| 405 | assert(beginRow + m.getNRow() -1 <= getNRow()); | 
| 406 | assert(beginCol + m.getNCol() - 1 <= getNCol()); | 
| 407 |  | 
| 408 | for (unsigned int i = 0; i < m.getNRow(); ++i) | 
| 409 | for (unsigned int j = 0; j < m.getNCol(); ++j) | 
| 410 | m(i, j) = this->data_[beginRow+i][beginCol+j]; | 
| 411 | } | 
| 412 |  | 
| 413 | unsigned int getNRow() const {return Row;} | 
| 414 | unsigned int getNCol() const {return Col;} | 
| 415 |  | 
| 416 | protected: | 
| 417 | Real data_[Row][Col]; | 
| 418 | }; | 
| 419 |  | 
| 420 | /** Negate the value of every element of this matrix. */ | 
| 421 | template<typename Real, unsigned int Row, unsigned int Col> | 
| 422 | inline RectMatrix<Real, Row, Col> operator -(const RectMatrix<Real, Row, Col>& m) { | 
| 423 | RectMatrix<Real, Row, Col> result(m); | 
| 424 |  | 
| 425 | result.negate(); | 
| 426 |  | 
| 427 | return result; | 
| 428 | } | 
| 429 |  | 
| 430 | /** | 
| 431 | * Return the sum of two matrixes  (m1 + m2). | 
| 432 | * @return the sum of two matrixes | 
| 433 | * @param m1 the first matrix | 
| 434 | * @param m2 the second matrix | 
| 435 | */ | 
| 436 | template<typename Real, unsigned int Row, unsigned int Col> | 
| 437 | inline RectMatrix<Real, Row, Col> operator + (const RectMatrix<Real, Row, Col>& m1,const RectMatrix<Real, Row, Col>& m2) { | 
| 438 | RectMatrix<Real, Row, Col> result; | 
| 439 |  | 
| 440 | result.add(m1, m2); | 
| 441 |  | 
| 442 | return result; | 
| 443 | } | 
| 444 |  | 
| 445 | /** | 
| 446 | * Return the difference of two matrixes  (m1 - m2). | 
| 447 | * @return the sum of two matrixes | 
| 448 | * @param m1 the first matrix | 
| 449 | * @param m2 the second matrix | 
| 450 | */ | 
| 451 | template<typename Real, unsigned int Row, unsigned int Col> | 
| 452 | inline RectMatrix<Real, Row, Col> operator - (const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2) { | 
| 453 | RectMatrix<Real, Row, Col> result; | 
| 454 |  | 
| 455 | result.sub(m1, m2); | 
| 456 |  | 
| 457 | return result; | 
| 458 | } | 
| 459 |  | 
| 460 | /** | 
| 461 | * Return the multiplication of scalra and  matrix  (m * s). | 
| 462 | * @return the multiplication of a scalra and  a matrix | 
| 463 | * @param m the matrix | 
| 464 | * @param s the scalar | 
| 465 | */ | 
| 466 | template<typename Real, unsigned int Row, unsigned int Col> | 
| 467 | inline RectMatrix<Real, Row, Col> operator *(const RectMatrix<Real, Row, Col>& m, Real s) { | 
| 468 | RectMatrix<Real, Row, Col> result; | 
| 469 |  | 
| 470 | result.mul(s, m); | 
| 471 |  | 
| 472 | return result; | 
| 473 | } | 
| 474 |  | 
| 475 | /** | 
| 476 | * Return the multiplication of a scalra and  a matrix  (s * m). | 
| 477 | * @return the multiplication of a scalra and  a matrix | 
| 478 | * @param s the scalar | 
| 479 | * @param m the matrix | 
| 480 | */ | 
| 481 | template<typename Real, unsigned int Row, unsigned int Col> | 
| 482 | inline RectMatrix<Real, Row, Col> operator *(Real s, const RectMatrix<Real, Row, Col>& m) { | 
| 483 | RectMatrix<Real, Row, Col> result; | 
| 484 |  | 
| 485 | result.mul(s, m); | 
| 486 |  | 
| 487 | return result; | 
| 488 | } | 
| 489 |  | 
| 490 | /** | 
| 491 | * Return the multiplication of two matrixes  (m1 * m2). | 
| 492 | * @return the multiplication of two matrixes | 
| 493 | * @param m1 the first matrix | 
| 494 | * @param m2 the second matrix | 
| 495 | */ | 
| 496 | template<typename Real, unsigned int Row, unsigned int Col, unsigned int SameDim> | 
| 497 | inline RectMatrix<Real, Row, Col> operator *(const RectMatrix<Real, Row, SameDim>& m1, const RectMatrix<Real, SameDim, Col>& m2) { | 
| 498 | RectMatrix<Real, Row, Col> result; | 
| 499 |  | 
| 500 | for (unsigned int i = 0; i < Row; i++) | 
| 501 | for (unsigned int j = 0; j < Col; j++) | 
| 502 | for (unsigned int k = 0; k < SameDim; k++) | 
| 503 | result(i, j)  += m1(i, k) * m2(k, j); | 
| 504 |  | 
| 505 | return result; | 
| 506 | } | 
| 507 |  | 
| 508 | /** | 
| 509 | * Return the multiplication of  a matrix and a vector  (m * v). | 
| 510 | * @return the multiplication of a matrix and a vector | 
| 511 | * @param m the matrix | 
| 512 | * @param v the vector | 
| 513 | */ | 
| 514 | template<typename Real, unsigned int Row, unsigned int Col> | 
| 515 | inline Vector<Real, Row> operator *(const RectMatrix<Real, Row, Col>& m, const Vector<Real, Col>& v) { | 
| 516 | Vector<Real, Row> result; | 
| 517 |  | 
| 518 | for (unsigned int i = 0; i < Row ; i++) | 
| 519 | for (unsigned int j = 0; j < Col ; j++) | 
| 520 | result[i] += m(i, j) * v[j]; | 
| 521 |  | 
| 522 | return result; | 
| 523 | } | 
| 524 |  | 
| 525 | /** | 
| 526 | * Return the scalar division of matrix   (m / s). | 
| 527 | * @return the scalar division of matrix | 
| 528 | * @param m the matrix | 
| 529 | * @param s the scalar | 
| 530 | */ | 
| 531 | template<typename Real, unsigned int Row, unsigned int Col> | 
| 532 | inline RectMatrix<Real, Row, Col> operator /(const RectMatrix<Real, Row, Col>& m, Real s) { | 
| 533 | RectMatrix<Real, Row, Col> result; | 
| 534 |  | 
| 535 | result.div(s, m); | 
| 536 |  | 
| 537 | return result; | 
| 538 | } | 
| 539 |  | 
| 540 | /** | 
| 541 | * Write to an output stream | 
| 542 | */ | 
| 543 | template<typename Real,  unsigned int Row, unsigned int Col> | 
| 544 | std::ostream &operator<< ( std::ostream& o, const RectMatrix<Real, Row, Col>& m) { | 
| 545 | for (unsigned int i = 0; i < Row ; i++) { | 
| 546 | o << "("; | 
| 547 | for (unsigned int j = 0; j < Col ; j++) { | 
| 548 | o << m(i, j); | 
| 549 | if (j != Col -1) | 
| 550 | o << "\t"; | 
| 551 | } | 
| 552 | o << ")" << std::endl; | 
| 553 | } | 
| 554 | return o; | 
| 555 | } | 
| 556 | } | 
| 557 | #endif //MATH_RECTMATRIX_HPP |