| 6 | 
  | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
  | 
 * that the following conditions are met: | 
| 8 | 
  | 
 * | 
| 9 | 
< | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
< | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
< | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
< | 
 *    the article in which the program was described (Matthew | 
| 13 | 
< | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
< | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
< | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
< | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
< | 
 * | 
| 18 | 
< | 
 * 2. Redistributions of source code must retain the above copyright | 
| 9 | 
> | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
  | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
  | 
 * | 
| 12 | 
< | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | 
> | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
  | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
  | 
 *    documentation and/or other materials provided with the | 
| 15 | 
  | 
 *    distribution. | 
| 28 | 
  | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
  | 
 * such damages. | 
| 31 | 
+ | 
 * | 
| 32 | 
+ | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
+ | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
+ | 
 * work.  Good starting points are: | 
| 35 | 
+ | 
 *                                                                       | 
| 36 | 
+ | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
+ | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
+ | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).           | 
| 39 | 
+ | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
+ | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 42 | 
  | 
  | 
| 43 | 
  | 
/** | 
| 53 | 
  | 
#include <cmath> | 
| 54 | 
  | 
#include "Vector.hpp" | 
| 55 | 
  | 
 | 
| 56 | 
< | 
namespace oopse { | 
| 56 | 
> | 
namespace OpenMD { | 
| 57 | 
  | 
 | 
| 58 | 
  | 
  /** | 
| 59 | 
  | 
   * @class RectMatrix RectMatrix.hpp "math/RectMatrix.hpp" | 
| 221 | 
  | 
    /** | 
| 222 | 
  | 
     * Tests if this matrix is identical to matrix m | 
| 223 | 
  | 
     * @return true if this matrix is equal to the matrix m, return false otherwise | 
| 224 | 
< | 
     * @m matrix to be compared | 
| 224 | 
> | 
     * @param m matrix to be compared | 
| 225 | 
  | 
     * | 
| 226 | 
  | 
     * @todo replace operator == by template function equal | 
| 227 | 
  | 
     */ | 
| 237 | 
  | 
    /** | 
| 238 | 
  | 
     * Tests if this matrix is not equal to matrix m | 
| 239 | 
  | 
     * @return true if this matrix is not equal to the matrix m, return false otherwise | 
| 240 | 
< | 
     * @m matrix to be compared | 
| 240 | 
> | 
     * @param m matrix to be compared | 
| 241 | 
  | 
     */ | 
| 242 | 
  | 
    bool operator !=(const RectMatrix<Real, Row, Col>& m) { | 
| 243 | 
  | 
      return !(*this == m); | 
| 507 | 
  | 
  } | 
| 508 | 
  | 
     | 
| 509 | 
  | 
  /** | 
| 510 | 
< | 
   * Return the multiplication of  a matrix and a vector  (m * v).  | 
| 510 | 
> | 
   * Returns the multiplication of  a matrix and a vector  (m * v).  | 
| 511 | 
  | 
   * @return the multiplication of a matrix and a vector | 
| 512 | 
  | 
   * @param m the matrix | 
| 513 | 
  | 
   * @param v the vector | 
| 524 | 
  | 
  } | 
| 525 | 
  | 
 | 
| 526 | 
  | 
  /** | 
| 527 | 
+ | 
   * Returns the multiplication of a vector transpose and a matrix  (v^T * m).  | 
| 528 | 
+ | 
   * @return the multiplication of a vector transpose and a matrix | 
| 529 | 
+ | 
   * @param v the vector | 
| 530 | 
+ | 
   * @param m the matrix | 
| 531 | 
+ | 
   */ | 
| 532 | 
+ | 
  template<typename Real, unsigned int Row, unsigned int Col> | 
| 533 | 
+ | 
  inline Vector<Real, Col> operator *(const Vector<Real, Row>& v, const RectMatrix<Real, Row, Col>& m) { | 
| 534 | 
+ | 
    Vector<Real, Row> result; | 
| 535 | 
+ | 
     | 
| 536 | 
+ | 
    for (unsigned int i = 0; i < Col ; i++) | 
| 537 | 
+ | 
      for (unsigned int j = 0; j < Row ; j++)             | 
| 538 | 
+ | 
        result[i] += v[j] * m(j, i); | 
| 539 | 
+ | 
             | 
| 540 | 
+ | 
    return result;                                                                  | 
| 541 | 
+ | 
  } | 
| 542 | 
+ | 
 | 
| 543 | 
+ | 
  /** | 
| 544 | 
  | 
   * Return the scalar division of matrix   (m / s).  | 
| 545 | 
  | 
   * @return the scalar division of matrix   | 
| 546 | 
  | 
   * @param m the matrix | 
| 555 | 
  | 
    return result; | 
| 556 | 
  | 
  }     | 
| 557 | 
  | 
 | 
| 558 | 
+ | 
     | 
| 559 | 
+ | 
    /** | 
| 560 | 
+ | 
     * Returns the tensor contraction (double dot product) of two rank 2 | 
| 561 | 
+ | 
     * tensors (or Matrices) | 
| 562 | 
+ | 
     * | 
| 563 | 
+ | 
     * \f[ \mathbf{A} \colon \! \mathbf{B} = \sum_\alpha \sum_\beta \mathbf{A}_{\alpha \beta} B_{\alpha \beta} \f]  | 
| 564 | 
+ | 
     * | 
| 565 | 
+ | 
     * @param t1 first tensor | 
| 566 | 
+ | 
     * @param t2 second tensor | 
| 567 | 
+ | 
     * @return the tensor contraction (double dot product) of t1 and t2 | 
| 568 | 
+ | 
     */ | 
| 569 | 
+ | 
  template<typename Real, unsigned int Row, unsigned int Col>  | 
| 570 | 
+ | 
  inline Real doubleDot( const RectMatrix<Real, Row, Col>& t1,  | 
| 571 | 
+ | 
                         const RectMatrix<Real, Row, Col>& t2 ) { | 
| 572 | 
+ | 
    Real tmp; | 
| 573 | 
+ | 
    tmp = 0; | 
| 574 | 
+ | 
     | 
| 575 | 
+ | 
    for (unsigned int i = 0; i < Row; i++) | 
| 576 | 
+ | 
      for (unsigned int j =0; j < Col; j++) | 
| 577 | 
+ | 
        tmp += t1(i,j) * t2(i,j); | 
| 578 | 
+ | 
     | 
| 579 | 
+ | 
    return tmp; | 
| 580 | 
+ | 
  } | 
| 581 | 
+ | 
   | 
| 582 | 
+ | 
 | 
| 583 | 
+ | 
   | 
| 584 | 
  | 
  /** | 
| 585 | 
+ | 
   * Returns the vector (cross) product of two matrices.  This | 
| 586 | 
+ | 
   * operation is defined in: | 
| 587 | 
+ | 
   * | 
| 588 | 
+ | 
   * W. Smith, "Point Multipoles in the Ewald Summation (Revisited)," | 
| 589 | 
+ | 
   * CCP5 Newsletter No 46., pp. 18-30. | 
| 590 | 
+ | 
   * | 
| 591 | 
+ | 
   * Equation 21 defines: | 
| 592 | 
+ | 
   * \f[ | 
| 593 | 
+ | 
   * V_alpha = \sum_\beta \left[ A_{\alpha+1,\beta} * B_{\alpha+2,\beta}  | 
| 594 | 
+ | 
                           -A_{\alpha+2,\beta} * B_{\alpha+2,\beta} \right] | 
| 595 | 
+ | 
   * \f] | 
| 596 | 
+ | 
 | 
| 597 | 
+ | 
   * where \f[\alpha+1\f] and \f[\alpha+2\f] are regarded as cyclic | 
| 598 | 
+ | 
   * permuations of the matrix indices (i.e. for a 3x3 matrix, when | 
| 599 | 
+ | 
   * \f[\alpha = 2\f], \f[\alpha + 1 = 3 \f], and \f[\alpha + 2 = 1 \f] ). | 
| 600 | 
+ | 
   * | 
| 601 | 
+ | 
   * @param t1 first matrix | 
| 602 | 
+ | 
   * @param t2 second matrix | 
| 603 | 
+ | 
   * @return the cross product (vector product) of t1 and t2 | 
| 604 | 
+ | 
   */ | 
| 605 | 
+ | 
  template<typename Real, unsigned int Row, unsigned int Col> | 
| 606 | 
+ | 
  inline Vector<Real, Row> mCross( const RectMatrix<Real, Row, Col>& t1,  | 
| 607 | 
+ | 
                                  const RectMatrix<Real, Row, Col>& t2 ) { | 
| 608 | 
+ | 
    Vector<Real, Row> result; | 
| 609 | 
+ | 
    unsigned int i1; | 
| 610 | 
+ | 
    unsigned int i2; | 
| 611 | 
+ | 
     | 
| 612 | 
+ | 
    for (unsigned int i = 0; i < Row; i++) { | 
| 613 | 
+ | 
      i1 = (i+1)%Row; | 
| 614 | 
+ | 
      i2 = (i+2)%Row; | 
| 615 | 
+ | 
      for (unsigned int j = 0; j < Col; j++) { | 
| 616 | 
+ | 
        result[i] += t1(i1,j) * t2(i2,j) - t1(i2,j) * t2(i1,j); | 
| 617 | 
+ | 
      } | 
| 618 | 
+ | 
    } | 
| 619 | 
+ | 
    return result; | 
| 620 | 
+ | 
  } | 
| 621 | 
+ | 
   | 
| 622 | 
+ | 
   | 
| 623 | 
+ | 
  /** | 
| 624 | 
  | 
   * Write to an output stream | 
| 625 | 
  | 
   */ | 
| 626 | 
  | 
  template<typename Real,  unsigned int Row, unsigned int Col> |