| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | */ | 
| 42 |  | 
| 43 | /** | 
| 44 | * @file RectMatrix.hpp | 
| 45 | * @author Teng Lin | 
| 46 | * @date 10/11/2004 | 
| 47 | * @version 1.0 | 
| 48 | */ | 
| 49 |  | 
| 50 | #ifndef MATH_RECTMATRIX_HPP | 
| 51 | #define MATH_RECTMATRIX_HPP | 
| 52 | #include <math.h> | 
| 53 | #include <cmath> | 
| 54 | #include "Vector.hpp" | 
| 55 |  | 
| 56 | namespace OpenMD { | 
| 57 |  | 
| 58 | /** | 
| 59 | * @class RectMatrix RectMatrix.hpp "math/RectMatrix.hpp" | 
| 60 | * @brief rectangular matrix class | 
| 61 | */ | 
| 62 | template<typename Real, unsigned int Row, unsigned int Col> | 
| 63 | class RectMatrix { | 
| 64 | public: | 
| 65 | typedef Real ElemType; | 
| 66 | typedef Real* ElemPoinerType; | 
| 67 |  | 
| 68 | /** default constructor */ | 
| 69 | RectMatrix() { | 
| 70 | for (unsigned int i = 0; i < Row; i++) | 
| 71 | for (unsigned int j = 0; j < Col; j++) | 
| 72 | this->data_[i][j] = 0.0; | 
| 73 | } | 
| 74 |  | 
| 75 | /** Constructs and initializes every element of this matrix to a scalar */ | 
| 76 | RectMatrix(Real s) { | 
| 77 | for (unsigned int i = 0; i < Row; i++) | 
| 78 | for (unsigned int j = 0; j < Col; j++) | 
| 79 | this->data_[i][j] = s; | 
| 80 | } | 
| 81 |  | 
| 82 | RectMatrix(Real* array) { | 
| 83 | for (unsigned int i = 0; i < Row; i++) | 
| 84 | for (unsigned int j = 0; j < Col; j++) | 
| 85 | this->data_[i][j] = array[i * Row + j]; | 
| 86 | } | 
| 87 |  | 
| 88 | /** copy constructor */ | 
| 89 | RectMatrix(const RectMatrix<Real, Row, Col>& m) { | 
| 90 | *this = m; | 
| 91 | } | 
| 92 |  | 
| 93 | /** destructor*/ | 
| 94 | ~RectMatrix() {} | 
| 95 |  | 
| 96 | /** copy assignment operator */ | 
| 97 | RectMatrix<Real, Row, Col>& operator =(const RectMatrix<Real, Row, Col>& m) { | 
| 98 | if (this == &m) | 
| 99 | return *this; | 
| 100 |  | 
| 101 | for (unsigned int i = 0; i < Row; i++) | 
| 102 | for (unsigned int j = 0; j < Col; j++) | 
| 103 | this->data_[i][j] = m.data_[i][j]; | 
| 104 | return *this; | 
| 105 | } | 
| 106 |  | 
| 107 | /** | 
| 108 | * Return the reference of a single element of this matrix. | 
| 109 | * @return the reference of a single element of this matrix | 
| 110 | * @param i row index | 
| 111 | * @param j Column index | 
| 112 | */ | 
| 113 | Real& operator()(unsigned int i, unsigned int j) { | 
| 114 | //assert( i < Row && j < Col); | 
| 115 | return this->data_[i][j]; | 
| 116 | } | 
| 117 |  | 
| 118 | /** | 
| 119 | * Return the value of a single element of this matrix. | 
| 120 | * @return the value of a single element of this matrix | 
| 121 | * @param i row index | 
| 122 | * @param j Column index | 
| 123 | */ | 
| 124 | Real operator()(unsigned int i, unsigned int j) const  { | 
| 125 |  | 
| 126 | return this->data_[i][j]; | 
| 127 | } | 
| 128 |  | 
| 129 | /** | 
| 130 | * Copy the internal data to an array | 
| 131 | * @param array the pointer of destination array | 
| 132 | */ | 
| 133 | void getArray(Real* array) { | 
| 134 | for (unsigned int i = 0; i < Row; i++) { | 
| 135 | for (unsigned int j = 0; j < Col; j++) { | 
| 136 | array[i * Row + j] = this->data_[i][j]; | 
| 137 | } | 
| 138 | } | 
| 139 | } | 
| 140 |  | 
| 141 |  | 
| 142 | /** Returns the pointer of internal array */ | 
| 143 | Real* getArrayPointer() { | 
| 144 | return &this->data_[0][0]; | 
| 145 | } | 
| 146 |  | 
| 147 | /** | 
| 148 | * Returns a row of  this matrix as a vector. | 
| 149 | * @return a row of  this matrix as a vector | 
| 150 | * @param row the row index | 
| 151 | */ | 
| 152 | Vector<Real, Row> getRow(unsigned int row) { | 
| 153 | Vector<Real, Row> v; | 
| 154 |  | 
| 155 | for (unsigned int i = 0; i < Col; i++) | 
| 156 | v[i] = this->data_[row][i]; | 
| 157 |  | 
| 158 | return v; | 
| 159 | } | 
| 160 |  | 
| 161 | /** | 
| 162 | * Sets a row of  this matrix | 
| 163 | * @param row the row index | 
| 164 | * @param v the vector to be set | 
| 165 | */ | 
| 166 | void setRow(unsigned int row, const Vector<Real, Row>& v) { | 
| 167 |  | 
| 168 | for (unsigned int i = 0; i < Col; i++) | 
| 169 | this->data_[row][i] = v[i]; | 
| 170 | } | 
| 171 |  | 
| 172 | /** | 
| 173 | * Returns a column of  this matrix as a vector. | 
| 174 | * @return a column of  this matrix as a vector | 
| 175 | * @param col the column index | 
| 176 | */ | 
| 177 | Vector<Real, Col> getColumn(unsigned int col) { | 
| 178 | Vector<Real, Col> v; | 
| 179 |  | 
| 180 | for (unsigned int j = 0; j < Row; j++) | 
| 181 | v[j] = this->data_[j][col]; | 
| 182 |  | 
| 183 | return v; | 
| 184 | } | 
| 185 |  | 
| 186 | /** | 
| 187 | * Sets a column of  this matrix | 
| 188 | * @param col the column index | 
| 189 | * @param v the vector to be set | 
| 190 | */ | 
| 191 | void setColumn(unsigned int col, const Vector<Real, Col>& v){ | 
| 192 |  | 
| 193 | for (unsigned int j = 0; j < Row; j++) | 
| 194 | this->data_[j][col] = v[j]; | 
| 195 | } | 
| 196 |  | 
| 197 | /** | 
| 198 | * swap two rows of this matrix | 
| 199 | * @param i the first row | 
| 200 | * @param j the second row | 
| 201 | */ | 
| 202 | void swapRow(unsigned int i, unsigned int j){ | 
| 203 | assert(i < Row && j < Row); | 
| 204 |  | 
| 205 | for (unsigned int k = 0; k < Col; k++) | 
| 206 | std::swap(this->data_[i][k], this->data_[j][k]); | 
| 207 | } | 
| 208 |  | 
| 209 | /** | 
| 210 | * swap two Columns of this matrix | 
| 211 | * @param i the first Column | 
| 212 | * @param j the second Column | 
| 213 | */ | 
| 214 | void swapColumn(unsigned int i, unsigned int j){ | 
| 215 | assert(i < Col && j < Col); | 
| 216 |  | 
| 217 | for (unsigned int k = 0; k < Row; k++) | 
| 218 | std::swap(this->data_[k][i], this->data_[k][j]); | 
| 219 | } | 
| 220 |  | 
| 221 | /** | 
| 222 | * Tests if this matrix is identical to matrix m | 
| 223 | * @return true if this matrix is equal to the matrix m, return false otherwise | 
| 224 | * @param m matrix to be compared | 
| 225 | * | 
| 226 | * @todo replace operator == by template function equal | 
| 227 | */ | 
| 228 | bool operator ==(const RectMatrix<Real, Row, Col>& m) { | 
| 229 | for (unsigned int i = 0; i < Row; i++) | 
| 230 | for (unsigned int j = 0; j < Col; j++) | 
| 231 | if (!equal(this->data_[i][j], m.data_[i][j])) | 
| 232 | return false; | 
| 233 |  | 
| 234 | return true; | 
| 235 | } | 
| 236 |  | 
| 237 | /** | 
| 238 | * Tests if this matrix is not equal to matrix m | 
| 239 | * @return true if this matrix is not equal to the matrix m, return false otherwise | 
| 240 | * @param m matrix to be compared | 
| 241 | */ | 
| 242 | bool operator !=(const RectMatrix<Real, Row, Col>& m) { | 
| 243 | return !(*this == m); | 
| 244 | } | 
| 245 |  | 
| 246 | /** Negates the value of this matrix in place. */ | 
| 247 | inline void negate() { | 
| 248 | for (unsigned int i = 0; i < Row; i++) | 
| 249 | for (unsigned int j = 0; j < Col; j++) | 
| 250 | this->data_[i][j] = -this->data_[i][j]; | 
| 251 | } | 
| 252 |  | 
| 253 | /** | 
| 254 | * Sets the value of this matrix to the negation of matrix m. | 
| 255 | * @param m the source matrix | 
| 256 | */ | 
| 257 | inline void negate(const RectMatrix<Real, Row, Col>& m) { | 
| 258 | for (unsigned int i = 0; i < Row; i++) | 
| 259 | for (unsigned int j = 0; j < Col; j++) | 
| 260 | this->data_[i][j] = -m.data_[i][j]; | 
| 261 | } | 
| 262 |  | 
| 263 | /** | 
| 264 | * Sets the value of this matrix to the sum of itself and m (*this += m). | 
| 265 | * @param m the other matrix | 
| 266 | */ | 
| 267 | inline void add( const RectMatrix<Real, Row, Col>& m ) { | 
| 268 | for (unsigned int i = 0; i < Row; i++) | 
| 269 | for (unsigned int j = 0; j < Col; j++) | 
| 270 | this->data_[i][j] += m.data_[i][j]; | 
| 271 | } | 
| 272 |  | 
| 273 | /** | 
| 274 | * Sets the value of this matrix to the sum of m1 and m2 (*this = m1 + m2). | 
| 275 | * @param m1 the first matrix | 
| 276 | * @param m2 the second matrix | 
| 277 | */ | 
| 278 | inline void add( const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2 ) { | 
| 279 | for (unsigned int i = 0; i < Row; i++) | 
| 280 | for (unsigned int j = 0; j < Col; j++) | 
| 281 | this->data_[i][j] = m1.data_[i][j] + m2.data_[i][j]; | 
| 282 | } | 
| 283 |  | 
| 284 | /** | 
| 285 | * Sets the value of this matrix to the difference  of itself and m (*this -= m). | 
| 286 | * @param m the other matrix | 
| 287 | */ | 
| 288 | inline void sub( const RectMatrix<Real, Row, Col>& m ) { | 
| 289 | for (unsigned int i = 0; i < Row; i++) | 
| 290 | for (unsigned int j = 0; j < Col; j++) | 
| 291 | this->data_[i][j] -= m.data_[i][j]; | 
| 292 | } | 
| 293 |  | 
| 294 | /** | 
| 295 | * Sets the value of this matrix to the difference of matrix m1 and m2 (*this = m1 - m2). | 
| 296 | * @param m1 the first matrix | 
| 297 | * @param m2 the second matrix | 
| 298 | */ | 
| 299 | inline void sub( const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2){ | 
| 300 | for (unsigned int i = 0; i < Row; i++) | 
| 301 | for (unsigned int j = 0; j < Col; j++) | 
| 302 | this->data_[i][j] = m1.data_[i][j] - m2.data_[i][j]; | 
| 303 | } | 
| 304 |  | 
| 305 | /** | 
| 306 | * Sets the value of this matrix to the scalar multiplication of itself (*this *= s). | 
| 307 | * @param s the scalar value | 
| 308 | */ | 
| 309 | inline void mul( Real s ) { | 
| 310 | for (unsigned int i = 0; i < Row; i++) | 
| 311 | for (unsigned int j = 0; j < Col; j++) | 
| 312 | this->data_[i][j] *= s; | 
| 313 | } | 
| 314 |  | 
| 315 | /** | 
| 316 | * Sets the value of this matrix to the scalar multiplication of matrix m  (*this = s * m). | 
| 317 | * @param s the scalar value | 
| 318 | * @param m the matrix | 
| 319 | */ | 
| 320 | inline void mul( Real s, const RectMatrix<Real, Row, Col>& m ) { | 
| 321 | for (unsigned int i = 0; i < Row; i++) | 
| 322 | for (unsigned int j = 0; j < Col; j++) | 
| 323 | this->data_[i][j] = s * m.data_[i][j]; | 
| 324 | } | 
| 325 |  | 
| 326 | /** | 
| 327 | * Sets the value of this matrix to the scalar division of itself  (*this /= s ). | 
| 328 | * @param s the scalar value | 
| 329 | */ | 
| 330 | inline void div( Real s) { | 
| 331 | for (unsigned int i = 0; i < Row; i++) | 
| 332 | for (unsigned int j = 0; j < Col; j++) | 
| 333 | this->data_[i][j] /= s; | 
| 334 | } | 
| 335 |  | 
| 336 | /** | 
| 337 | * Sets the value of this matrix to the scalar division of matrix m  (*this = m /s). | 
| 338 | * @param s the scalar value | 
| 339 | * @param m the matrix | 
| 340 | */ | 
| 341 | inline void div( Real s, const RectMatrix<Real, Row, Col>& m ) { | 
| 342 | for (unsigned int i = 0; i < Row; i++) | 
| 343 | for (unsigned int j = 0; j < Col; j++) | 
| 344 | this->data_[i][j] = m.data_[i][j] / s; | 
| 345 | } | 
| 346 |  | 
| 347 | /** | 
| 348 | *  Multiples a scalar into every element of this matrix. | 
| 349 | * @param s the scalar value | 
| 350 | */ | 
| 351 | RectMatrix<Real, Row, Col>& operator *=(const Real s) { | 
| 352 | this->mul(s); | 
| 353 | return *this; | 
| 354 | } | 
| 355 |  | 
| 356 | /** | 
| 357 | *  Divides every element of this matrix by a scalar. | 
| 358 | * @param s the scalar value | 
| 359 | */ | 
| 360 | RectMatrix<Real, Row, Col>& operator /=(const Real s) { | 
| 361 | this->div(s); | 
| 362 | return *this; | 
| 363 | } | 
| 364 |  | 
| 365 | /** | 
| 366 | * Sets the value of this matrix to the sum of the other matrix and itself (*this += m). | 
| 367 | * @param m the other matrix | 
| 368 | */ | 
| 369 | RectMatrix<Real, Row, Col>& operator += (const RectMatrix<Real, Row, Col>& m) { | 
| 370 | add(m); | 
| 371 | return *this; | 
| 372 | } | 
| 373 |  | 
| 374 | /** | 
| 375 | * Sets the value of this matrix to the differerence of itself and the other matrix (*this -= m) | 
| 376 | * @param m the other matrix | 
| 377 | */ | 
| 378 | RectMatrix<Real, Row, Col>& operator -= (const RectMatrix<Real, Row, Col>& m){ | 
| 379 | sub(m); | 
| 380 | return *this; | 
| 381 | } | 
| 382 |  | 
| 383 | /** Return the transpose of this matrix */ | 
| 384 | RectMatrix<Real,  Col, Row> transpose() const{ | 
| 385 | RectMatrix<Real,  Col, Row> result; | 
| 386 |  | 
| 387 | for (unsigned int i = 0; i < Row; i++) | 
| 388 | for (unsigned int j = 0; j < Col; j++) | 
| 389 | result(j, i) = this->data_[i][j]; | 
| 390 |  | 
| 391 | return result; | 
| 392 | } | 
| 393 |  | 
| 394 | template<class MatrixType> | 
| 395 | void setSubMatrix(unsigned int beginRow, unsigned int beginCol, const MatrixType& m) { | 
| 396 | assert(beginRow + m.getNRow() -1 <= getNRow()); | 
| 397 | assert(beginCol + m.getNCol() -1 <= getNCol()); | 
| 398 |  | 
| 399 | for (unsigned int i = 0; i < m.getNRow(); ++i) | 
| 400 | for (unsigned int j = 0; j < m.getNCol(); ++j) | 
| 401 | this->data_[beginRow+i][beginCol+j] = m(i, j); | 
| 402 | } | 
| 403 |  | 
| 404 | template<class MatrixType> | 
| 405 | void getSubMatrix(unsigned int beginRow, unsigned int beginCol, MatrixType& m) { | 
| 406 | assert(beginRow + m.getNRow() -1 <= getNRow()); | 
| 407 | assert(beginCol + m.getNCol() - 1 <= getNCol()); | 
| 408 |  | 
| 409 | for (unsigned int i = 0; i < m.getNRow(); ++i) | 
| 410 | for (unsigned int j = 0; j < m.getNCol(); ++j) | 
| 411 | m(i, j) = this->data_[beginRow+i][beginCol+j]; | 
| 412 | } | 
| 413 |  | 
| 414 | unsigned int getNRow() const {return Row;} | 
| 415 | unsigned int getNCol() const {return Col;} | 
| 416 |  | 
| 417 | protected: | 
| 418 | Real data_[Row][Col]; | 
| 419 | }; | 
| 420 |  | 
| 421 | /** Negate the value of every element of this matrix. */ | 
| 422 | template<typename Real, unsigned int Row, unsigned int Col> | 
| 423 | inline RectMatrix<Real, Row, Col> operator -(const RectMatrix<Real, Row, Col>& m) { | 
| 424 | RectMatrix<Real, Row, Col> result(m); | 
| 425 |  | 
| 426 | result.negate(); | 
| 427 |  | 
| 428 | return result; | 
| 429 | } | 
| 430 |  | 
| 431 | /** | 
| 432 | * Return the sum of two matrixes  (m1 + m2). | 
| 433 | * @return the sum of two matrixes | 
| 434 | * @param m1 the first matrix | 
| 435 | * @param m2 the second matrix | 
| 436 | */ | 
| 437 | template<typename Real, unsigned int Row, unsigned int Col> | 
| 438 | inline RectMatrix<Real, Row, Col> operator + (const RectMatrix<Real, Row, Col>& m1,const RectMatrix<Real, Row, Col>& m2) { | 
| 439 | RectMatrix<Real, Row, Col> result; | 
| 440 |  | 
| 441 | result.add(m1, m2); | 
| 442 |  | 
| 443 | return result; | 
| 444 | } | 
| 445 |  | 
| 446 | /** | 
| 447 | * Return the difference of two matrixes  (m1 - m2). | 
| 448 | * @return the sum of two matrixes | 
| 449 | * @param m1 the first matrix | 
| 450 | * @param m2 the second matrix | 
| 451 | */ | 
| 452 | template<typename Real, unsigned int Row, unsigned int Col> | 
| 453 | inline RectMatrix<Real, Row, Col> operator - (const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2) { | 
| 454 | RectMatrix<Real, Row, Col> result; | 
| 455 |  | 
| 456 | result.sub(m1, m2); | 
| 457 |  | 
| 458 | return result; | 
| 459 | } | 
| 460 |  | 
| 461 | /** | 
| 462 | * Return the multiplication of scalra and  matrix  (m * s). | 
| 463 | * @return the multiplication of a scalra and  a matrix | 
| 464 | * @param m the matrix | 
| 465 | * @param s the scalar | 
| 466 | */ | 
| 467 | template<typename Real, unsigned int Row, unsigned int Col> | 
| 468 | inline RectMatrix<Real, Row, Col> operator *(const RectMatrix<Real, Row, Col>& m, Real s) { | 
| 469 | RectMatrix<Real, Row, Col> result; | 
| 470 |  | 
| 471 | result.mul(s, m); | 
| 472 |  | 
| 473 | return result; | 
| 474 | } | 
| 475 |  | 
| 476 | /** | 
| 477 | * Return the multiplication of a scalra and  a matrix  (s * m). | 
| 478 | * @return the multiplication of a scalra and  a matrix | 
| 479 | * @param s the scalar | 
| 480 | * @param m the matrix | 
| 481 | */ | 
| 482 | template<typename Real, unsigned int Row, unsigned int Col> | 
| 483 | inline RectMatrix<Real, Row, Col> operator *(Real s, const RectMatrix<Real, Row, Col>& m) { | 
| 484 | RectMatrix<Real, Row, Col> result; | 
| 485 |  | 
| 486 | result.mul(s, m); | 
| 487 |  | 
| 488 | return result; | 
| 489 | } | 
| 490 |  | 
| 491 | /** | 
| 492 | * Return the multiplication of two matrixes  (m1 * m2). | 
| 493 | * @return the multiplication of two matrixes | 
| 494 | * @param m1 the first matrix | 
| 495 | * @param m2 the second matrix | 
| 496 | */ | 
| 497 | template<typename Real, unsigned int Row, unsigned int Col, unsigned int SameDim> | 
| 498 | inline RectMatrix<Real, Row, Col> operator *(const RectMatrix<Real, Row, SameDim>& m1, const RectMatrix<Real, SameDim, Col>& m2) { | 
| 499 | RectMatrix<Real, Row, Col> result; | 
| 500 |  | 
| 501 | for (unsigned int i = 0; i < Row; i++) | 
| 502 | for (unsigned int j = 0; j < Col; j++) | 
| 503 | for (unsigned int k = 0; k < SameDim; k++) | 
| 504 | result(i, j)  += m1(i, k) * m2(k, j); | 
| 505 |  | 
| 506 | return result; | 
| 507 | } | 
| 508 |  | 
| 509 | /** | 
| 510 | * Returns the multiplication of  a matrix and a vector  (m * v). | 
| 511 | * @return the multiplication of a matrix and a vector | 
| 512 | * @param m the matrix | 
| 513 | * @param v the vector | 
| 514 | */ | 
| 515 | template<typename Real, unsigned int Row, unsigned int Col> | 
| 516 | inline Vector<Real, Row> operator *(const RectMatrix<Real, Row, Col>& m, const Vector<Real, Col>& v) { | 
| 517 | Vector<Real, Row> result; | 
| 518 |  | 
| 519 | for (unsigned int i = 0; i < Row ; i++) | 
| 520 | for (unsigned int j = 0; j < Col ; j++) | 
| 521 | result[i] += m(i, j) * v[j]; | 
| 522 |  | 
| 523 | return result; | 
| 524 | } | 
| 525 |  | 
| 526 | /** | 
| 527 | * Returns the multiplication of a vector transpose and a matrix  (v^T * m). | 
| 528 | * @return the multiplication of a vector transpose and a matrix | 
| 529 | * @param v the vector | 
| 530 | * @param m the matrix | 
| 531 | */ | 
| 532 | template<typename Real, unsigned int Row, unsigned int Col> | 
| 533 | inline Vector<Real, Col> operator *(const Vector<Real, Row>& v, const RectMatrix<Real, Row, Col>& m) { | 
| 534 | Vector<Real, Row> result; | 
| 535 |  | 
| 536 | for (unsigned int i = 0; i < Col ; i++) | 
| 537 | for (unsigned int j = 0; j < Row ; j++) | 
| 538 | result[i] += v[j] * m(j, i); | 
| 539 |  | 
| 540 | return result; | 
| 541 | } | 
| 542 |  | 
| 543 | /** | 
| 544 | * Return the scalar division of matrix   (m / s). | 
| 545 | * @return the scalar division of matrix | 
| 546 | * @param m the matrix | 
| 547 | * @param s the scalar | 
| 548 | */ | 
| 549 | template<typename Real, unsigned int Row, unsigned int Col> | 
| 550 | inline RectMatrix<Real, Row, Col> operator /(const RectMatrix<Real, Row, Col>& m, Real s) { | 
| 551 | RectMatrix<Real, Row, Col> result; | 
| 552 |  | 
| 553 | result.div(s, m); | 
| 554 |  | 
| 555 | return result; | 
| 556 | } | 
| 557 |  | 
| 558 |  | 
| 559 | /** | 
| 560 | * Returns the tensor contraction (double dot product) of two rank 2 | 
| 561 | * tensors (or Matrices) | 
| 562 | * | 
| 563 | * \f[ \mathbf{A} \colon \! \mathbf{B} = \sum_\alpha \sum_\beta \mathbf{A}_{\alpha \beta} B_{\alpha \beta} \f] | 
| 564 | * | 
| 565 | * @param t1 first tensor | 
| 566 | * @param t2 second tensor | 
| 567 | * @return the tensor contraction (double dot product) of t1 and t2 | 
| 568 | */ | 
| 569 | template<typename Real, unsigned int Row, unsigned int Col> | 
| 570 | inline Real doubleDot( const RectMatrix<Real, Row, Col>& t1, | 
| 571 | const RectMatrix<Real, Row, Col>& t2 ) { | 
| 572 | Real tmp; | 
| 573 | tmp = 0; | 
| 574 |  | 
| 575 | for (unsigned int i = 0; i < Row; i++) | 
| 576 | for (unsigned int j =0; j < Col; j++) | 
| 577 | tmp += t1(i,j) * t2(i,j); | 
| 578 |  | 
| 579 | return tmp; | 
| 580 | } | 
| 581 |  | 
| 582 |  | 
| 583 |  | 
| 584 | /** | 
| 585 | * Returns the vector (cross) product of two matrices.  This | 
| 586 | * operation is defined in: | 
| 587 | * | 
| 588 | * W. Smith, "Point Multipoles in the Ewald Summation (Revisited)," | 
| 589 | * CCP5 Newsletter No 46., pp. 18-30. | 
| 590 | * | 
| 591 | * Equation 21 defines: | 
| 592 | * \f[ | 
| 593 | * V_alpha = \sum_\beta \left[ A_{\alpha+1,\beta} * B_{\alpha+2,\beta} | 
| 594 | -A_{\alpha+2,\beta} * B_{\alpha+2,\beta} \right] | 
| 595 | * \f] | 
| 596 |  | 
| 597 | * where \f[\alpha+1\f] and \f[\alpha+2\f] are regarded as cyclic | 
| 598 | * permuations of the matrix indices (i.e. for a 3x3 matrix, when | 
| 599 | * \f[\alpha = 2\f], \f[\alpha + 1 = 3 \f], and \f[\alpha + 2 = 1 \f] ). | 
| 600 | * | 
| 601 | * @param t1 first matrix | 
| 602 | * @param t2 second matrix | 
| 603 | * @return the cross product (vector product) of t1 and t2 | 
| 604 | */ | 
| 605 | template<typename Real, unsigned int Row, unsigned int Col> | 
| 606 | inline Vector<Real, Row> mCross( const RectMatrix<Real, Row, Col>& t1, | 
| 607 | const RectMatrix<Real, Row, Col>& t2 ) { | 
| 608 | Vector<Real, Row> result; | 
| 609 | unsigned int i1; | 
| 610 | unsigned int i2; | 
| 611 |  | 
| 612 | for (unsigned int i = 0; i < Row; i++) { | 
| 613 | i1 = (i+1)%Row; | 
| 614 | i2 = (i+2)%Row; | 
| 615 | for (unsigned int j = 0; j < Col; j++) { | 
| 616 | result[i] += t1(i1,j) * t2(i2,j) - t1(i2,j) * t2(i1,j); | 
| 617 | } | 
| 618 | } | 
| 619 | return result; | 
| 620 | } | 
| 621 |  | 
| 622 |  | 
| 623 | /** | 
| 624 | * Write to an output stream | 
| 625 | */ | 
| 626 | template<typename Real,  unsigned int Row, unsigned int Col> | 
| 627 | std::ostream &operator<< ( std::ostream& o, const RectMatrix<Real, Row, Col>& m) { | 
| 628 | for (unsigned int i = 0; i < Row ; i++) { | 
| 629 | o << "("; | 
| 630 | for (unsigned int j = 0; j < Col ; j++) { | 
| 631 | o << m(i, j); | 
| 632 | if (j != Col -1) | 
| 633 | o << "\t"; | 
| 634 | } | 
| 635 | o << ")" << std::endl; | 
| 636 | } | 
| 637 | return o; | 
| 638 | } | 
| 639 | } | 
| 640 | #endif //MATH_RECTMATRIX_HPP |