| 35 |  | * | 
| 36 |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | < | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | < | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 38 | > | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | > | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | > | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 42 |  |  | 
| 43 |  | /** | 
| 221 |  | /** | 
| 222 |  | * Tests if this matrix is identical to matrix m | 
| 223 |  | * @return true if this matrix is equal to the matrix m, return false otherwise | 
| 224 | < | * @m matrix to be compared | 
| 224 | > | * @param m matrix to be compared | 
| 225 |  | * | 
| 226 |  | * @todo replace operator == by template function equal | 
| 227 |  | */ | 
| 237 |  | /** | 
| 238 |  | * Tests if this matrix is not equal to matrix m | 
| 239 |  | * @return true if this matrix is not equal to the matrix m, return false otherwise | 
| 240 | < | * @m matrix to be compared | 
| 240 | > | * @param m matrix to be compared | 
| 241 |  | */ | 
| 242 |  | bool operator !=(const RectMatrix<Real, Row, Col>& m) { | 
| 243 |  | return !(*this == m); | 
| 507 |  | } | 
| 508 |  |  | 
| 509 |  | /** | 
| 510 | < | * Return the multiplication of  a matrix and a vector  (m * v). | 
| 510 | > | * Returns the multiplication of  a matrix and a vector  (m * v). | 
| 511 |  | * @return the multiplication of a matrix and a vector | 
| 512 |  | * @param m the matrix | 
| 513 |  | * @param v the vector | 
| 519 |  | for (unsigned int i = 0; i < Row ; i++) | 
| 520 |  | for (unsigned int j = 0; j < Col ; j++) | 
| 521 |  | result[i] += m(i, j) * v[j]; | 
| 522 | + |  | 
| 523 | + | return result; | 
| 524 | + | } | 
| 525 | + |  | 
| 526 | + | /** | 
| 527 | + | * Returns the multiplication of a vector transpose and a matrix  (v^T * m). | 
| 528 | + | * @return the multiplication of a vector transpose and a matrix | 
| 529 | + | * @param v the vector | 
| 530 | + | * @param m the matrix | 
| 531 | + | */ | 
| 532 | + | template<typename Real, unsigned int Row, unsigned int Col> | 
| 533 | + | inline Vector<Real, Col> operator *(const Vector<Real, Row>& v, const RectMatrix<Real, Row, Col>& m) { | 
| 534 | + | Vector<Real, Row> result; | 
| 535 | + |  | 
| 536 | + | for (unsigned int i = 0; i < Col ; i++) | 
| 537 | + | for (unsigned int j = 0; j < Row ; j++) | 
| 538 | + | result[i] += v[j] * m(j, i); | 
| 539 |  |  | 
| 540 |  | return result; | 
| 541 |  | } | 
| 555 |  | return result; | 
| 556 |  | } | 
| 557 |  |  | 
| 558 | + |  | 
| 559 | + | /** | 
| 560 | + | * Returns the tensor contraction (double dot product) of two rank 2 | 
| 561 | + | * tensors (or Matrices) | 
| 562 | + | * | 
| 563 | + | * \f[ \mathbf{A} \colon \! \mathbf{B} = \sum_\alpha \sum_\beta \mathbf{A}_{\alpha \beta} B_{\alpha \beta} \f] | 
| 564 | + | * | 
| 565 | + | * @param t1 first tensor | 
| 566 | + | * @param t2 second tensor | 
| 567 | + | * @return the tensor contraction (double dot product) of t1 and t2 | 
| 568 | + | */ | 
| 569 | + | template<typename Real, unsigned int Row, unsigned int Col> | 
| 570 | + | inline Real doubleDot( const RectMatrix<Real, Row, Col>& t1, | 
| 571 | + | const RectMatrix<Real, Row, Col>& t2 ) { | 
| 572 | + | Real tmp; | 
| 573 | + | tmp = 0; | 
| 574 | + |  | 
| 575 | + | for (unsigned int i = 0; i < Row; i++) | 
| 576 | + | for (unsigned int j =0; j < Col; j++) | 
| 577 | + | tmp += t1(i,j) * t2(i,j); | 
| 578 | + |  | 
| 579 | + | return tmp; | 
| 580 | + | } | 
| 581 | + |  | 
| 582 | + |  | 
| 583 | + |  | 
| 584 |  | /** | 
| 585 | + | * Returns the vector (cross) product of two matrices.  This | 
| 586 | + | * operation is defined in: | 
| 587 | + | * | 
| 588 | + | * W. Smith, "Point Multipoles in the Ewald Summation (Revisited)," | 
| 589 | + | * CCP5 Newsletter No 46., pp. 18-30. | 
| 590 | + | * | 
| 591 | + | * Equation 21 defines: | 
| 592 | + | * \f[ | 
| 593 | + | * V_alpha = \sum_\beta \left[ A_{\alpha+1,\beta} * B_{\alpha+2,\beta} | 
| 594 | + | -A_{\alpha+2,\beta} * B_{\alpha+2,\beta} \right] | 
| 595 | + | * \f] | 
| 596 | + |  | 
| 597 | + | * where \f[\alpha+1\f] and \f[\alpha+2\f] are regarded as cyclic | 
| 598 | + | * permuations of the matrix indices (i.e. for a 3x3 matrix, when | 
| 599 | + | * \f[\alpha = 2\f], \f[\alpha + 1 = 3 \f], and \f[\alpha + 2 = 1 \f] ). | 
| 600 | + | * | 
| 601 | + | * @param t1 first matrix | 
| 602 | + | * @param t2 second matrix | 
| 603 | + | * @return the cross product (vector product) of t1 and t2 | 
| 604 | + | */ | 
| 605 | + | template<typename Real, unsigned int Row, unsigned int Col> | 
| 606 | + | inline Vector<Real, Row> mCross( const RectMatrix<Real, Row, Col>& t1, | 
| 607 | + | const RectMatrix<Real, Row, Col>& t2 ) { | 
| 608 | + | Vector<Real, Row> result; | 
| 609 | + | unsigned int i1; | 
| 610 | + | unsigned int i2; | 
| 611 | + |  | 
| 612 | + | for (unsigned int i = 0; i < Row; i++) { | 
| 613 | + | i1 = (i+1)%Row; | 
| 614 | + | i2 = (i+2)%Row; | 
| 615 | + | for (unsigned int j = 0; j < Col; j++) { | 
| 616 | + | result[i] += t1(i1,j) * t2(i2,j) - t1(i2,j) * t2(i1,j); | 
| 617 | + | } | 
| 618 | + | } | 
| 619 | + | return result; | 
| 620 | + | } | 
| 621 | + |  | 
| 622 | + |  | 
| 623 | + | /** | 
| 624 |  | * Write to an output stream | 
| 625 |  | */ | 
| 626 |  | template<typename Real,  unsigned int Row, unsigned int Col> |