| 1 | < | /* | 
| 2 | < | * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project | 
| 3 | < | * | 
| 4 | < | * Contact: oopse@oopse.org | 
| 5 | < | * | 
| 6 | < | * This program is free software; you can redistribute it and/or | 
| 7 | < | * modify it under the terms of the GNU Lesser General Public License | 
| 8 | < | * as published by the Free Software Foundation; either version 2.1 | 
| 9 | < | * of the License, or (at your option) any later version. | 
| 10 | < | * All we ask is that proper credit is given for our work, which includes | 
| 11 | < | * - but is not limited to - adding the above copyright notice to the beginning | 
| 12 | < | * of your source code files, and to any copyright notice that you may distribute | 
| 13 | < | * with programs based on this work. | 
| 14 | < | * | 
| 15 | < | * This program is distributed in the hope that it will be useful, | 
| 16 | < | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 17 | < | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 18 | < | * GNU Lesser General Public License for more details. | 
| 19 | < | * | 
| 20 | < | * You should have received a copy of the GNU Lesser General Public License | 
| 21 | < | * along with this program; if not, write to the Free Software | 
| 22 | < | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA. | 
| 1 | > | /* | 
| 2 | > | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 |  | * | 
| 4 | + | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | + | * non-exclusive, royalty free, license to use, modify and | 
| 6 | + | * redistribute this software in source and binary code form, provided | 
| 7 | + | * that the following conditions are met: | 
| 8 | + | * | 
| 9 | + | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | + | *    publication of scientific results based in part on use of the | 
| 11 | + | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | + | *    the article in which the program was described (Matthew | 
| 13 | + | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | + | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | + | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | + | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | + | * | 
| 18 | + | * 2. Redistributions of source code must retain the above copyright | 
| 19 | + | *    notice, this list of conditions and the following disclaimer. | 
| 20 | + | * | 
| 21 | + | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | + | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | + | *    documentation and/or other materials provided with the | 
| 24 | + | *    distribution. | 
| 25 | + | * | 
| 26 | + | * This software is provided "AS IS," without a warranty of any | 
| 27 | + | * kind. All express or implied conditions, representations and | 
| 28 | + | * warranties, including any implied warranty of merchantability, | 
| 29 | + | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | + | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | + | * be liable for any damages suffered by licensee as a result of | 
| 32 | + | * using, modifying or distributing the software or its | 
| 33 | + | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | + | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | + | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | + | * damages, however caused and regardless of the theory of liability, | 
| 37 | + | * arising out of the use of or inability to use software, even if the | 
| 38 | + | * University of Notre Dame has been advised of the possibility of | 
| 39 | + | * such damages. | 
| 40 |  | */ | 
| 41 | < |  | 
| 26 | < |  | 
| 41 | > |  | 
| 42 |  | /** | 
| 43 |  | * @file RectMatrix.hpp | 
| 44 |  | * @author Teng Lin | 
| 48 |  |  | 
| 49 |  | #ifndef MATH_RECTMATRIX_HPP | 
| 50 |  | #define MATH_RECTMATRIX_HPP | 
| 51 | < |  | 
| 51 | > | #include <math.h> | 
| 52 |  | #include <cmath> | 
| 53 |  | #include "Vector.hpp" | 
| 54 |  |  | 
| 68 |  | RectMatrix() { | 
| 69 |  | for (unsigned int i = 0; i < Row; i++) | 
| 70 |  | for (unsigned int j = 0; j < Col; j++) | 
| 71 | < | data_[i][j] = 0.0; | 
| 71 | > | this->data_[i][j] = 0.0; | 
| 72 |  | } | 
| 73 |  |  | 
| 74 |  | /** Constructs and initializes every element of this matrix to a scalar */ | 
| 75 |  | RectMatrix(Real s) { | 
| 76 |  | for (unsigned int i = 0; i < Row; i++) | 
| 77 |  | for (unsigned int j = 0; j < Col; j++) | 
| 78 | < | data_[i][j] = s; | 
| 78 | > | this->data_[i][j] = s; | 
| 79 |  | } | 
| 80 |  |  | 
| 81 |  | RectMatrix(Real* array) { | 
| 82 |  | for (unsigned int i = 0; i < Row; i++) | 
| 83 |  | for (unsigned int j = 0; j < Col; j++) | 
| 84 | < | data_[i][j] = array[i * Row + j]; | 
| 84 | > | this->data_[i][j] = array[i * Row + j]; | 
| 85 |  | } | 
| 86 |  |  | 
| 87 |  | /** copy constructor */ | 
| 99 |  |  | 
| 100 |  | for (unsigned int i = 0; i < Row; i++) | 
| 101 |  | for (unsigned int j = 0; j < Col; j++) | 
| 102 | < | data_[i][j] = m.data_[i][j]; | 
| 102 | > | this->data_[i][j] = m.data_[i][j]; | 
| 103 |  | return *this; | 
| 104 |  | } | 
| 105 |  |  | 
| 107 |  | * Return the reference of a single element of this matrix. | 
| 108 |  | * @return the reference of a single element of this matrix | 
| 109 |  | * @param i row index | 
| 110 | < | * @param j colum index | 
| 110 | > | * @param j Column index | 
| 111 |  | */ | 
| 112 |  | Real& operator()(unsigned int i, unsigned int j) { | 
| 113 |  | //assert( i < Row && j < Col); | 
| 114 | < | return data_[i][j]; | 
| 114 | > | return this->data_[i][j]; | 
| 115 |  | } | 
| 116 |  |  | 
| 117 |  | /** | 
| 118 |  | * Return the value of a single element of this matrix. | 
| 119 |  | * @return the value of a single element of this matrix | 
| 120 |  | * @param i row index | 
| 121 | < | * @param j colum index | 
| 121 | > | * @param j Column index | 
| 122 |  | */ | 
| 123 |  | Real operator()(unsigned int i, unsigned int j) const  { | 
| 124 |  |  | 
| 125 | < | return data_[i][j]; | 
| 125 | > | return this->data_[i][j]; | 
| 126 |  | } | 
| 127 |  |  | 
| 128 |  | /** | 
| 132 |  | void getArray(Real* array) { | 
| 133 |  | for (unsigned int i = 0; i < Row; i++) { | 
| 134 |  | for (unsigned int j = 0; j < Col; j++) { | 
| 135 | < | array[i * Row + j] = data_[i][j]; | 
| 135 | > | array[i * Row + j] = this->data_[i][j]; | 
| 136 |  | } | 
| 137 |  | } | 
| 138 |  | } | 
| 140 |  |  | 
| 141 |  | /** Returns the pointer of internal array */ | 
| 142 |  | Real* getArrayPointer() { | 
| 143 | < | return &data_[0][0]; | 
| 143 | > | return &this->data_[0][0]; | 
| 144 |  | } | 
| 145 |  |  | 
| 146 |  | /** | 
| 152 |  | Vector<Real, Row> v; | 
| 153 |  |  | 
| 154 |  | for (unsigned int i = 0; i < Row; i++) | 
| 155 | < | v[i] = data_[row][i]; | 
| 155 | > | v[i] = this->data_[row][i]; | 
| 156 |  |  | 
| 157 |  | return v; | 
| 158 |  | } | 
| 165 |  | void setRow(unsigned int row, const Vector<Real, Row>& v) { | 
| 166 |  |  | 
| 167 |  | for (unsigned int i = 0; i < Row; i++) | 
| 168 | < | data_[row][i] = v[i]; | 
| 168 | > | this->data_[row][i] = v[i]; | 
| 169 |  | } | 
| 170 |  |  | 
| 171 |  | /** | 
| 173 |  | * @return a column of  this matrix as a vector | 
| 174 |  | * @param col the column index | 
| 175 |  | */ | 
| 176 | < | Vector<Real, Col> getColum(unsigned int col) { | 
| 176 | > | Vector<Real, Col> getColumn(unsigned int col) { | 
| 177 |  | Vector<Real, Col> v; | 
| 178 |  |  | 
| 179 |  | for (unsigned int j = 0; j < Col; j++) | 
| 180 | < | v[j] = data_[j][col]; | 
| 180 | > | v[j] = this->data_[j][col]; | 
| 181 |  |  | 
| 182 |  | return v; | 
| 183 |  | } | 
| 187 |  | * @param col the column index | 
| 188 |  | * @param v the vector to be set | 
| 189 |  | */ | 
| 190 | < | void setColum(unsigned int col, const Vector<Real, Col>& v){ | 
| 190 | > | void setColumn(unsigned int col, const Vector<Real, Col>& v){ | 
| 191 |  |  | 
| 192 |  | for (unsigned int j = 0; j < Col; j++) | 
| 193 | < | data_[j][col] = v[j]; | 
| 193 | > | this->data_[j][col] = v[j]; | 
| 194 |  | } | 
| 195 |  |  | 
| 196 |  | /** | 
| 202 |  | assert(i < Row && j < Row); | 
| 203 |  |  | 
| 204 |  | for (unsigned int k = 0; k < Col; k++) | 
| 205 | < | std::swap(data_[i][k], data_[j][k]); | 
| 205 | > | std::swap(this->data_[i][k], this->data_[j][k]); | 
| 206 |  | } | 
| 207 |  |  | 
| 208 |  | /** | 
| 209 | < | * swap two colums of this matrix | 
| 210 | < | * @param i the first colum | 
| 211 | < | * @param j the second colum | 
| 209 | > | * swap two Columns of this matrix | 
| 210 | > | * @param i the first Column | 
| 211 | > | * @param j the second Column | 
| 212 |  | */ | 
| 213 | < | void swapColum(unsigned int i, unsigned int j){ | 
| 213 | > | void swapColumn(unsigned int i, unsigned int j){ | 
| 214 |  | assert(i < Col && j < Col); | 
| 215 |  |  | 
| 216 |  | for (unsigned int k = 0; k < Row; k++) | 
| 217 | < | std::swap(data_[k][i], data_[k][j]); | 
| 217 | > | std::swap(this->data_[k][i], this->data_[k][j]); | 
| 218 |  | } | 
| 219 |  |  | 
| 220 |  | /** | 
| 227 |  | bool operator ==(const RectMatrix<Real, Row, Col>& m) { | 
| 228 |  | for (unsigned int i = 0; i < Row; i++) | 
| 229 |  | for (unsigned int j = 0; j < Col; j++) | 
| 230 | < | if (!equal(data_[i][j], m.data_[i][j])) | 
| 230 | > | if (!equal(this->data_[i][j], m.data_[i][j])) | 
| 231 |  | return false; | 
| 232 |  |  | 
| 233 |  | return true; | 
| 246 |  | inline void negate() { | 
| 247 |  | for (unsigned int i = 0; i < Row; i++) | 
| 248 |  | for (unsigned int j = 0; j < Col; j++) | 
| 249 | < | data_[i][j] = -data_[i][j]; | 
| 249 | > | this->data_[i][j] = -this->data_[i][j]; | 
| 250 |  | } | 
| 251 |  |  | 
| 252 |  | /** | 
| 256 |  | inline void negate(const RectMatrix<Real, Row, Col>& m) { | 
| 257 |  | for (unsigned int i = 0; i < Row; i++) | 
| 258 |  | for (unsigned int j = 0; j < Col; j++) | 
| 259 | < | data_[i][j] = -m.data_[i][j]; | 
| 259 | > | this->data_[i][j] = -m.data_[i][j]; | 
| 260 |  | } | 
| 261 |  |  | 
| 262 |  | /** | 
| 266 |  | inline void add( const RectMatrix<Real, Row, Col>& m ) { | 
| 267 |  | for (unsigned int i = 0; i < Row; i++) | 
| 268 |  | for (unsigned int j = 0; j < Col; j++) | 
| 269 | < | data_[i][j] += m.data_[i][j]; | 
| 269 | > | this->data_[i][j] += m.data_[i][j]; | 
| 270 |  | } | 
| 271 |  |  | 
| 272 |  | /** | 
| 277 |  | inline void add( const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2 ) { | 
| 278 |  | for (unsigned int i = 0; i < Row; i++) | 
| 279 |  | for (unsigned int j = 0; j < Col; j++) | 
| 280 | < | data_[i][j] = m1.data_[i][j] + m2.data_[i][j]; | 
| 280 | > | this->data_[i][j] = m1.data_[i][j] + m2.data_[i][j]; | 
| 281 |  | } | 
| 282 |  |  | 
| 283 |  | /** | 
| 287 |  | inline void sub( const RectMatrix<Real, Row, Col>& m ) { | 
| 288 |  | for (unsigned int i = 0; i < Row; i++) | 
| 289 |  | for (unsigned int j = 0; j < Col; j++) | 
| 290 | < | data_[i][j] -= m.data_[i][j]; | 
| 290 | > | this->data_[i][j] -= m.data_[i][j]; | 
| 291 |  | } | 
| 292 |  |  | 
| 293 |  | /** | 
| 298 |  | inline void sub( const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2){ | 
| 299 |  | for (unsigned int i = 0; i < Row; i++) | 
| 300 |  | for (unsigned int j = 0; j < Col; j++) | 
| 301 | < | data_[i][j] = m1.data_[i][j] - m2.data_[i][j]; | 
| 301 | > | this->data_[i][j] = m1.data_[i][j] - m2.data_[i][j]; | 
| 302 |  | } | 
| 303 |  |  | 
| 304 |  | /** | 
| 308 |  | inline void mul( Real s ) { | 
| 309 |  | for (unsigned int i = 0; i < Row; i++) | 
| 310 |  | for (unsigned int j = 0; j < Col; j++) | 
| 311 | < | data_[i][j] *= s; | 
| 311 | > | this->data_[i][j] *= s; | 
| 312 |  | } | 
| 313 |  |  | 
| 314 |  | /** | 
| 319 |  | inline void mul( Real s, const RectMatrix<Real, Row, Col>& m ) { | 
| 320 |  | for (unsigned int i = 0; i < Row; i++) | 
| 321 |  | for (unsigned int j = 0; j < Col; j++) | 
| 322 | < | data_[i][j] = s * m.data_[i][j]; | 
| 322 | > | this->data_[i][j] = s * m.data_[i][j]; | 
| 323 |  | } | 
| 324 |  |  | 
| 325 |  | /** | 
| 329 |  | inline void div( Real s) { | 
| 330 |  | for (unsigned int i = 0; i < Row; i++) | 
| 331 |  | for (unsigned int j = 0; j < Col; j++) | 
| 332 | < | data_[i][j] /= s; | 
| 332 | > | this->data_[i][j] /= s; | 
| 333 |  | } | 
| 334 |  |  | 
| 335 |  | /** | 
| 340 |  | inline void div( Real s, const RectMatrix<Real, Row, Col>& m ) { | 
| 341 |  | for (unsigned int i = 0; i < Row; i++) | 
| 342 |  | for (unsigned int j = 0; j < Col; j++) | 
| 343 | < | data_[i][j] = m.data_[i][j] / s; | 
| 343 | > | this->data_[i][j] = m.data_[i][j] / s; | 
| 344 |  | } | 
| 345 |  |  | 
| 346 |  | /** | 
| 380 |  | } | 
| 381 |  |  | 
| 382 |  | /** Return the transpose of this matrix */ | 
| 383 | < | RectMatrix<Real,  Col, Row> transpose(){ | 
| 383 | > | RectMatrix<Real,  Col, Row> transpose() const{ | 
| 384 |  | RectMatrix<Real,  Col, Row> result; | 
| 385 |  |  | 
| 386 |  | for (unsigned int i = 0; i < Row; i++) | 
| 387 |  | for (unsigned int j = 0; j < Col; j++) | 
| 388 | < | result(j, i) = data_[i][j]; | 
| 388 | > | result(j, i) = this->data_[i][j]; | 
| 389 |  |  | 
| 390 |  | return result; | 
| 391 |  | } |