| 1 |
/* |
| 2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
* |
| 4 |
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
* non-exclusive, royalty free, license to use, modify and |
| 6 |
* redistribute this software in source and binary code form, provided |
| 7 |
* that the following conditions are met: |
| 8 |
* |
| 9 |
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
* publication of scientific results based in part on use of the |
| 11 |
* program. An acceptable form of acknowledgement is citation of |
| 12 |
* the article in which the program was described (Matthew |
| 13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
* |
| 18 |
* 2. Redistributions of source code must retain the above copyright |
| 19 |
* notice, this list of conditions and the following disclaimer. |
| 20 |
* |
| 21 |
* 3. Redistributions in binary form must reproduce the above copyright |
| 22 |
* notice, this list of conditions and the following disclaimer in the |
| 23 |
* documentation and/or other materials provided with the |
| 24 |
* distribution. |
| 25 |
* |
| 26 |
* This software is provided "AS IS," without a warranty of any |
| 27 |
* kind. All express or implied conditions, representations and |
| 28 |
* warranties, including any implied warranty of merchantability, |
| 29 |
* fitness for a particular purpose or non-infringement, are hereby |
| 30 |
* excluded. The University of Notre Dame and its licensors shall not |
| 31 |
* be liable for any damages suffered by licensee as a result of |
| 32 |
* using, modifying or distributing the software or its |
| 33 |
* derivatives. In no event will the University of Notre Dame or its |
| 34 |
* licensors be liable for any lost revenue, profit or data, or for |
| 35 |
* direct, indirect, special, consequential, incidental or punitive |
| 36 |
* damages, however caused and regardless of the theory of liability, |
| 37 |
* arising out of the use of or inability to use software, even if the |
| 38 |
* University of Notre Dame has been advised of the possibility of |
| 39 |
* such damages. |
| 40 |
*/ |
| 41 |
|
| 42 |
/** |
| 43 |
* @file RectMatrix.hpp |
| 44 |
* @author Teng Lin |
| 45 |
* @date 10/11/2004 |
| 46 |
* @version 1.0 |
| 47 |
*/ |
| 48 |
|
| 49 |
#ifndef MATH_RECTMATRIX_HPP |
| 50 |
#define MATH_RECTMATRIX_HPP |
| 51 |
#include <math.h> |
| 52 |
#include <cmath> |
| 53 |
#include "Vector.hpp" |
| 54 |
|
| 55 |
namespace oopse { |
| 56 |
|
| 57 |
/** |
| 58 |
* @class RectMatrix RectMatrix.hpp "math/RectMatrix.hpp" |
| 59 |
* @brief rectangular matrix class |
| 60 |
*/ |
| 61 |
template<typename Real, unsigned int Row, unsigned int Col> |
| 62 |
class RectMatrix { |
| 63 |
public: |
| 64 |
typedef Real ElemType; |
| 65 |
typedef Real* ElemPoinerType; |
| 66 |
|
| 67 |
/** default constructor */ |
| 68 |
RectMatrix() { |
| 69 |
for (unsigned int i = 0; i < Row; i++) |
| 70 |
for (unsigned int j = 0; j < Col; j++) |
| 71 |
this->data_[i][j] = 0.0; |
| 72 |
} |
| 73 |
|
| 74 |
/** Constructs and initializes every element of this matrix to a scalar */ |
| 75 |
RectMatrix(Real s) { |
| 76 |
for (unsigned int i = 0; i < Row; i++) |
| 77 |
for (unsigned int j = 0; j < Col; j++) |
| 78 |
this->data_[i][j] = s; |
| 79 |
} |
| 80 |
|
| 81 |
RectMatrix(Real* array) { |
| 82 |
for (unsigned int i = 0; i < Row; i++) |
| 83 |
for (unsigned int j = 0; j < Col; j++) |
| 84 |
this->data_[i][j] = array[i * Row + j]; |
| 85 |
} |
| 86 |
|
| 87 |
/** copy constructor */ |
| 88 |
RectMatrix(const RectMatrix<Real, Row, Col>& m) { |
| 89 |
*this = m; |
| 90 |
} |
| 91 |
|
| 92 |
/** destructor*/ |
| 93 |
~RectMatrix() {} |
| 94 |
|
| 95 |
/** copy assignment operator */ |
| 96 |
RectMatrix<Real, Row, Col>& operator =(const RectMatrix<Real, Row, Col>& m) { |
| 97 |
if (this == &m) |
| 98 |
return *this; |
| 99 |
|
| 100 |
for (unsigned int i = 0; i < Row; i++) |
| 101 |
for (unsigned int j = 0; j < Col; j++) |
| 102 |
this->data_[i][j] = m.data_[i][j]; |
| 103 |
return *this; |
| 104 |
} |
| 105 |
|
| 106 |
/** |
| 107 |
* Return the reference of a single element of this matrix. |
| 108 |
* @return the reference of a single element of this matrix |
| 109 |
* @param i row index |
| 110 |
* @param j Column index |
| 111 |
*/ |
| 112 |
Real& operator()(unsigned int i, unsigned int j) { |
| 113 |
//assert( i < Row && j < Col); |
| 114 |
return this->data_[i][j]; |
| 115 |
} |
| 116 |
|
| 117 |
/** |
| 118 |
* Return the value of a single element of this matrix. |
| 119 |
* @return the value of a single element of this matrix |
| 120 |
* @param i row index |
| 121 |
* @param j Column index |
| 122 |
*/ |
| 123 |
Real operator()(unsigned int i, unsigned int j) const { |
| 124 |
|
| 125 |
return this->data_[i][j]; |
| 126 |
} |
| 127 |
|
| 128 |
/** |
| 129 |
* Copy the internal data to an array |
| 130 |
* @param array the pointer of destination array |
| 131 |
*/ |
| 132 |
void getArray(Real* array) { |
| 133 |
for (unsigned int i = 0; i < Row; i++) { |
| 134 |
for (unsigned int j = 0; j < Col; j++) { |
| 135 |
array[i * Row + j] = this->data_[i][j]; |
| 136 |
} |
| 137 |
} |
| 138 |
} |
| 139 |
|
| 140 |
|
| 141 |
/** Returns the pointer of internal array */ |
| 142 |
Real* getArrayPointer() { |
| 143 |
return &this->data_[0][0]; |
| 144 |
} |
| 145 |
|
| 146 |
/** |
| 147 |
* Returns a row of this matrix as a vector. |
| 148 |
* @return a row of this matrix as a vector |
| 149 |
* @param row the row index |
| 150 |
*/ |
| 151 |
Vector<Real, Row> getRow(unsigned int row) { |
| 152 |
Vector<Real, Row> v; |
| 153 |
|
| 154 |
for (unsigned int i = 0; i < Col; i++) |
| 155 |
v[i] = this->data_[row][i]; |
| 156 |
|
| 157 |
return v; |
| 158 |
} |
| 159 |
|
| 160 |
/** |
| 161 |
* Sets a row of this matrix |
| 162 |
* @param row the row index |
| 163 |
* @param v the vector to be set |
| 164 |
*/ |
| 165 |
void setRow(unsigned int row, const Vector<Real, Row>& v) { |
| 166 |
|
| 167 |
for (unsigned int i = 0; i < Col; i++) |
| 168 |
this->data_[row][i] = v[i]; |
| 169 |
} |
| 170 |
|
| 171 |
/** |
| 172 |
* Returns a column of this matrix as a vector. |
| 173 |
* @return a column of this matrix as a vector |
| 174 |
* @param col the column index |
| 175 |
*/ |
| 176 |
Vector<Real, Col> getColumn(unsigned int col) { |
| 177 |
Vector<Real, Col> v; |
| 178 |
|
| 179 |
for (unsigned int j = 0; j < Row; j++) |
| 180 |
v[j] = this->data_[j][col]; |
| 181 |
|
| 182 |
return v; |
| 183 |
} |
| 184 |
|
| 185 |
/** |
| 186 |
* Sets a column of this matrix |
| 187 |
* @param col the column index |
| 188 |
* @param v the vector to be set |
| 189 |
*/ |
| 190 |
void setColumn(unsigned int col, const Vector<Real, Col>& v){ |
| 191 |
|
| 192 |
for (unsigned int j = 0; j < Row; j++) |
| 193 |
this->data_[j][col] = v[j]; |
| 194 |
} |
| 195 |
|
| 196 |
/** |
| 197 |
* swap two rows of this matrix |
| 198 |
* @param i the first row |
| 199 |
* @param j the second row |
| 200 |
*/ |
| 201 |
void swapRow(unsigned int i, unsigned int j){ |
| 202 |
assert(i < Row && j < Row); |
| 203 |
|
| 204 |
for (unsigned int k = 0; k < Col; k++) |
| 205 |
std::swap(this->data_[i][k], this->data_[j][k]); |
| 206 |
} |
| 207 |
|
| 208 |
/** |
| 209 |
* swap two Columns of this matrix |
| 210 |
* @param i the first Column |
| 211 |
* @param j the second Column |
| 212 |
*/ |
| 213 |
void swapColumn(unsigned int i, unsigned int j){ |
| 214 |
assert(i < Col && j < Col); |
| 215 |
|
| 216 |
for (unsigned int k = 0; k < Row; k++) |
| 217 |
std::swap(this->data_[k][i], this->data_[k][j]); |
| 218 |
} |
| 219 |
|
| 220 |
/** |
| 221 |
* Tests if this matrix is identical to matrix m |
| 222 |
* @return true if this matrix is equal to the matrix m, return false otherwise |
| 223 |
* @m matrix to be compared |
| 224 |
* |
| 225 |
* @todo replace operator == by template function equal |
| 226 |
*/ |
| 227 |
bool operator ==(const RectMatrix<Real, Row, Col>& m) { |
| 228 |
for (unsigned int i = 0; i < Row; i++) |
| 229 |
for (unsigned int j = 0; j < Col; j++) |
| 230 |
if (!equal(this->data_[i][j], m.data_[i][j])) |
| 231 |
return false; |
| 232 |
|
| 233 |
return true; |
| 234 |
} |
| 235 |
|
| 236 |
/** |
| 237 |
* Tests if this matrix is not equal to matrix m |
| 238 |
* @return true if this matrix is not equal to the matrix m, return false otherwise |
| 239 |
* @m matrix to be compared |
| 240 |
*/ |
| 241 |
bool operator !=(const RectMatrix<Real, Row, Col>& m) { |
| 242 |
return !(*this == m); |
| 243 |
} |
| 244 |
|
| 245 |
/** Negates the value of this matrix in place. */ |
| 246 |
inline void negate() { |
| 247 |
for (unsigned int i = 0; i < Row; i++) |
| 248 |
for (unsigned int j = 0; j < Col; j++) |
| 249 |
this->data_[i][j] = -this->data_[i][j]; |
| 250 |
} |
| 251 |
|
| 252 |
/** |
| 253 |
* Sets the value of this matrix to the negation of matrix m. |
| 254 |
* @param m the source matrix |
| 255 |
*/ |
| 256 |
inline void negate(const RectMatrix<Real, Row, Col>& m) { |
| 257 |
for (unsigned int i = 0; i < Row; i++) |
| 258 |
for (unsigned int j = 0; j < Col; j++) |
| 259 |
this->data_[i][j] = -m.data_[i][j]; |
| 260 |
} |
| 261 |
|
| 262 |
/** |
| 263 |
* Sets the value of this matrix to the sum of itself and m (*this += m). |
| 264 |
* @param m the other matrix |
| 265 |
*/ |
| 266 |
inline void add( const RectMatrix<Real, Row, Col>& m ) { |
| 267 |
for (unsigned int i = 0; i < Row; i++) |
| 268 |
for (unsigned int j = 0; j < Col; j++) |
| 269 |
this->data_[i][j] += m.data_[i][j]; |
| 270 |
} |
| 271 |
|
| 272 |
/** |
| 273 |
* Sets the value of this matrix to the sum of m1 and m2 (*this = m1 + m2). |
| 274 |
* @param m1 the first matrix |
| 275 |
* @param m2 the second matrix |
| 276 |
*/ |
| 277 |
inline void add( const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2 ) { |
| 278 |
for (unsigned int i = 0; i < Row; i++) |
| 279 |
for (unsigned int j = 0; j < Col; j++) |
| 280 |
this->data_[i][j] = m1.data_[i][j] + m2.data_[i][j]; |
| 281 |
} |
| 282 |
|
| 283 |
/** |
| 284 |
* Sets the value of this matrix to the difference of itself and m (*this -= m). |
| 285 |
* @param m the other matrix |
| 286 |
*/ |
| 287 |
inline void sub( const RectMatrix<Real, Row, Col>& m ) { |
| 288 |
for (unsigned int i = 0; i < Row; i++) |
| 289 |
for (unsigned int j = 0; j < Col; j++) |
| 290 |
this->data_[i][j] -= m.data_[i][j]; |
| 291 |
} |
| 292 |
|
| 293 |
/** |
| 294 |
* Sets the value of this matrix to the difference of matrix m1 and m2 (*this = m1 - m2). |
| 295 |
* @param m1 the first matrix |
| 296 |
* @param m2 the second matrix |
| 297 |
*/ |
| 298 |
inline void sub( const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2){ |
| 299 |
for (unsigned int i = 0; i < Row; i++) |
| 300 |
for (unsigned int j = 0; j < Col; j++) |
| 301 |
this->data_[i][j] = m1.data_[i][j] - m2.data_[i][j]; |
| 302 |
} |
| 303 |
|
| 304 |
/** |
| 305 |
* Sets the value of this matrix to the scalar multiplication of itself (*this *= s). |
| 306 |
* @param s the scalar value |
| 307 |
*/ |
| 308 |
inline void mul( Real s ) { |
| 309 |
for (unsigned int i = 0; i < Row; i++) |
| 310 |
for (unsigned int j = 0; j < Col; j++) |
| 311 |
this->data_[i][j] *= s; |
| 312 |
} |
| 313 |
|
| 314 |
/** |
| 315 |
* Sets the value of this matrix to the scalar multiplication of matrix m (*this = s * m). |
| 316 |
* @param s the scalar value |
| 317 |
* @param m the matrix |
| 318 |
*/ |
| 319 |
inline void mul( Real s, const RectMatrix<Real, Row, Col>& m ) { |
| 320 |
for (unsigned int i = 0; i < Row; i++) |
| 321 |
for (unsigned int j = 0; j < Col; j++) |
| 322 |
this->data_[i][j] = s * m.data_[i][j]; |
| 323 |
} |
| 324 |
|
| 325 |
/** |
| 326 |
* Sets the value of this matrix to the scalar division of itself (*this /= s ). |
| 327 |
* @param s the scalar value |
| 328 |
*/ |
| 329 |
inline void div( Real s) { |
| 330 |
for (unsigned int i = 0; i < Row; i++) |
| 331 |
for (unsigned int j = 0; j < Col; j++) |
| 332 |
this->data_[i][j] /= s; |
| 333 |
} |
| 334 |
|
| 335 |
/** |
| 336 |
* Sets the value of this matrix to the scalar division of matrix m (*this = m /s). |
| 337 |
* @param s the scalar value |
| 338 |
* @param m the matrix |
| 339 |
*/ |
| 340 |
inline void div( Real s, const RectMatrix<Real, Row, Col>& m ) { |
| 341 |
for (unsigned int i = 0; i < Row; i++) |
| 342 |
for (unsigned int j = 0; j < Col; j++) |
| 343 |
this->data_[i][j] = m.data_[i][j] / s; |
| 344 |
} |
| 345 |
|
| 346 |
/** |
| 347 |
* Multiples a scalar into every element of this matrix. |
| 348 |
* @param s the scalar value |
| 349 |
*/ |
| 350 |
RectMatrix<Real, Row, Col>& operator *=(const Real s) { |
| 351 |
this->mul(s); |
| 352 |
return *this; |
| 353 |
} |
| 354 |
|
| 355 |
/** |
| 356 |
* Divides every element of this matrix by a scalar. |
| 357 |
* @param s the scalar value |
| 358 |
*/ |
| 359 |
RectMatrix<Real, Row, Col>& operator /=(const Real s) { |
| 360 |
this->div(s); |
| 361 |
return *this; |
| 362 |
} |
| 363 |
|
| 364 |
/** |
| 365 |
* Sets the value of this matrix to the sum of the other matrix and itself (*this += m). |
| 366 |
* @param m the other matrix |
| 367 |
*/ |
| 368 |
RectMatrix<Real, Row, Col>& operator += (const RectMatrix<Real, Row, Col>& m) { |
| 369 |
add(m); |
| 370 |
return *this; |
| 371 |
} |
| 372 |
|
| 373 |
/** |
| 374 |
* Sets the value of this matrix to the differerence of itself and the other matrix (*this -= m) |
| 375 |
* @param m the other matrix |
| 376 |
*/ |
| 377 |
RectMatrix<Real, Row, Col>& operator -= (const RectMatrix<Real, Row, Col>& m){ |
| 378 |
sub(m); |
| 379 |
return *this; |
| 380 |
} |
| 381 |
|
| 382 |
/** Return the transpose of this matrix */ |
| 383 |
RectMatrix<Real, Col, Row> transpose() const{ |
| 384 |
RectMatrix<Real, Col, Row> result; |
| 385 |
|
| 386 |
for (unsigned int i = 0; i < Row; i++) |
| 387 |
for (unsigned int j = 0; j < Col; j++) |
| 388 |
result(j, i) = this->data_[i][j]; |
| 389 |
|
| 390 |
return result; |
| 391 |
} |
| 392 |
|
| 393 |
template<class MatrixType> |
| 394 |
void setSubMatrix(unsigned int beginRow, unsigned int beginCol, const MatrixType& m) { |
| 395 |
assert(beginRow + m.getNRow() -1 <= getNRow()); |
| 396 |
assert(beginCol + m.getNCol() -1 <= getNCol()); |
| 397 |
|
| 398 |
for (unsigned int i = 0; i < m.getNRow(); ++i) |
| 399 |
for (unsigned int j = 0; j < m.getNCol(); ++j) |
| 400 |
this->data_[beginRow+i][beginCol+j] = m(i, j); |
| 401 |
} |
| 402 |
|
| 403 |
template<class MatrixType> |
| 404 |
void getSubMatrix(unsigned int beginRow, unsigned int beginCol, MatrixType& m) { |
| 405 |
assert(beginRow + m.getNRow() -1 <= getNRow()); |
| 406 |
assert(beginCol + m.getNCol() - 1 <= getNCol()); |
| 407 |
|
| 408 |
for (unsigned int i = 0; i < m.getNRow(); ++i) |
| 409 |
for (unsigned int j = 0; j < m.getNCol(); ++j) |
| 410 |
m(i, j) = this->data_[beginRow+i][beginCol+j]; |
| 411 |
} |
| 412 |
|
| 413 |
unsigned int getNRow() const {return Row;} |
| 414 |
unsigned int getNCol() const {return Col;} |
| 415 |
|
| 416 |
protected: |
| 417 |
Real data_[Row][Col]; |
| 418 |
}; |
| 419 |
|
| 420 |
/** Negate the value of every element of this matrix. */ |
| 421 |
template<typename Real, unsigned int Row, unsigned int Col> |
| 422 |
inline RectMatrix<Real, Row, Col> operator -(const RectMatrix<Real, Row, Col>& m) { |
| 423 |
RectMatrix<Real, Row, Col> result(m); |
| 424 |
|
| 425 |
result.negate(); |
| 426 |
|
| 427 |
return result; |
| 428 |
} |
| 429 |
|
| 430 |
/** |
| 431 |
* Return the sum of two matrixes (m1 + m2). |
| 432 |
* @return the sum of two matrixes |
| 433 |
* @param m1 the first matrix |
| 434 |
* @param m2 the second matrix |
| 435 |
*/ |
| 436 |
template<typename Real, unsigned int Row, unsigned int Col> |
| 437 |
inline RectMatrix<Real, Row, Col> operator + (const RectMatrix<Real, Row, Col>& m1,const RectMatrix<Real, Row, Col>& m2) { |
| 438 |
RectMatrix<Real, Row, Col> result; |
| 439 |
|
| 440 |
result.add(m1, m2); |
| 441 |
|
| 442 |
return result; |
| 443 |
} |
| 444 |
|
| 445 |
/** |
| 446 |
* Return the difference of two matrixes (m1 - m2). |
| 447 |
* @return the sum of two matrixes |
| 448 |
* @param m1 the first matrix |
| 449 |
* @param m2 the second matrix |
| 450 |
*/ |
| 451 |
template<typename Real, unsigned int Row, unsigned int Col> |
| 452 |
inline RectMatrix<Real, Row, Col> operator - (const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2) { |
| 453 |
RectMatrix<Real, Row, Col> result; |
| 454 |
|
| 455 |
result.sub(m1, m2); |
| 456 |
|
| 457 |
return result; |
| 458 |
} |
| 459 |
|
| 460 |
/** |
| 461 |
* Return the multiplication of scalra and matrix (m * s). |
| 462 |
* @return the multiplication of a scalra and a matrix |
| 463 |
* @param m the matrix |
| 464 |
* @param s the scalar |
| 465 |
*/ |
| 466 |
template<typename Real, unsigned int Row, unsigned int Col> |
| 467 |
inline RectMatrix<Real, Row, Col> operator *(const RectMatrix<Real, Row, Col>& m, Real s) { |
| 468 |
RectMatrix<Real, Row, Col> result; |
| 469 |
|
| 470 |
result.mul(s, m); |
| 471 |
|
| 472 |
return result; |
| 473 |
} |
| 474 |
|
| 475 |
/** |
| 476 |
* Return the multiplication of a scalra and a matrix (s * m). |
| 477 |
* @return the multiplication of a scalra and a matrix |
| 478 |
* @param s the scalar |
| 479 |
* @param m the matrix |
| 480 |
*/ |
| 481 |
template<typename Real, unsigned int Row, unsigned int Col> |
| 482 |
inline RectMatrix<Real, Row, Col> operator *(Real s, const RectMatrix<Real, Row, Col>& m) { |
| 483 |
RectMatrix<Real, Row, Col> result; |
| 484 |
|
| 485 |
result.mul(s, m); |
| 486 |
|
| 487 |
return result; |
| 488 |
} |
| 489 |
|
| 490 |
/** |
| 491 |
* Return the multiplication of two matrixes (m1 * m2). |
| 492 |
* @return the multiplication of two matrixes |
| 493 |
* @param m1 the first matrix |
| 494 |
* @param m2 the second matrix |
| 495 |
*/ |
| 496 |
template<typename Real, unsigned int Row, unsigned int Col, unsigned int SameDim> |
| 497 |
inline RectMatrix<Real, Row, Col> operator *(const RectMatrix<Real, Row, SameDim>& m1, const RectMatrix<Real, SameDim, Col>& m2) { |
| 498 |
RectMatrix<Real, Row, Col> result; |
| 499 |
|
| 500 |
for (unsigned int i = 0; i < Row; i++) |
| 501 |
for (unsigned int j = 0; j < Col; j++) |
| 502 |
for (unsigned int k = 0; k < SameDim; k++) |
| 503 |
result(i, j) += m1(i, k) * m2(k, j); |
| 504 |
|
| 505 |
return result; |
| 506 |
} |
| 507 |
|
| 508 |
/** |
| 509 |
* Return the multiplication of a matrix and a vector (m * v). |
| 510 |
* @return the multiplication of a matrix and a vector |
| 511 |
* @param m the matrix |
| 512 |
* @param v the vector |
| 513 |
*/ |
| 514 |
template<typename Real, unsigned int Row, unsigned int Col> |
| 515 |
inline Vector<Real, Row> operator *(const RectMatrix<Real, Row, Col>& m, const Vector<Real, Col>& v) { |
| 516 |
Vector<Real, Row> result; |
| 517 |
|
| 518 |
for (unsigned int i = 0; i < Row ; i++) |
| 519 |
for (unsigned int j = 0; j < Col ; j++) |
| 520 |
result[i] += m(i, j) * v[j]; |
| 521 |
|
| 522 |
return result; |
| 523 |
} |
| 524 |
|
| 525 |
/** |
| 526 |
* Return the scalar division of matrix (m / s). |
| 527 |
* @return the scalar division of matrix |
| 528 |
* @param m the matrix |
| 529 |
* @param s the scalar |
| 530 |
*/ |
| 531 |
template<typename Real, unsigned int Row, unsigned int Col> |
| 532 |
inline RectMatrix<Real, Row, Col> operator /(const RectMatrix<Real, Row, Col>& m, Real s) { |
| 533 |
RectMatrix<Real, Row, Col> result; |
| 534 |
|
| 535 |
result.div(s, m); |
| 536 |
|
| 537 |
return result; |
| 538 |
} |
| 539 |
|
| 540 |
/** |
| 541 |
* Write to an output stream |
| 542 |
*/ |
| 543 |
template<typename Real, unsigned int Row, unsigned int Col> |
| 544 |
std::ostream &operator<< ( std::ostream& o, const RectMatrix<Real, Row, Col>& m) { |
| 545 |
for (unsigned int i = 0; i < Row ; i++) { |
| 546 |
o << "("; |
| 547 |
for (unsigned int j = 0; j < Col ; j++) { |
| 548 |
o << m(i, j); |
| 549 |
if (j != Col -1) |
| 550 |
o << "\t"; |
| 551 |
} |
| 552 |
o << ")" << std::endl; |
| 553 |
} |
| 554 |
return o; |
| 555 |
} |
| 556 |
} |
| 557 |
#endif //MATH_RECTMATRIX_HPP |