| 1 | cli2 | 1349 | #ifndef JAMA_SVD_H | 
| 2 |  |  | #define JAMA_SVD_H | 
| 3 |  |  |  | 
| 4 |  |  | #include "math/DynamicRectMatrix.hpp" | 
| 5 |  |  |  | 
| 6 |  |  | #include <algorithm> | 
| 7 |  |  | // for min(), max() below | 
| 8 |  |  | #include <cmath> | 
| 9 |  |  | // for abs() below | 
| 10 |  |  |  | 
| 11 | gezelter | 1390 | using namespace OpenMD; | 
| 12 | cli2 | 1349 | using namespace std; | 
| 13 |  |  |  | 
| 14 |  |  | namespace JAMA | 
| 15 |  |  | { | 
| 16 |  |  | /** Singular Value Decomposition. | 
| 17 |  |  | <P> | 
| 18 |  |  | For an m-by-n matrix A with m >= n, the singular value decomposition is | 
| 19 |  |  | an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and | 
| 20 |  |  | an n-by-n orthogonal matrix V so that A = U*S*V'. | 
| 21 |  |  | <P> | 
| 22 |  |  | The singular values, sigma(k) = S(k,k), are ordered so that | 
| 23 |  |  | sigma(0) >= sigma(1) >= ... >= sigma(n-1). | 
| 24 |  |  | <P> | 
| 25 |  |  | The singular value decompostion always exists, so the constructor will | 
| 26 |  |  | never fail.  The matrix condition number and the effective numerical | 
| 27 |  |  | rank can be computed from this decomposition. | 
| 28 |  |  |  | 
| 29 |  |  | <p> | 
| 30 |  |  | (Adapted from JAMA, a Java Matrix Library, developed by jointly | 
| 31 |  |  | by the Mathworks and NIST; see  http://math.nist.gov/javanumerics/jama). | 
| 32 |  |  | */ | 
| 33 |  |  | template <class Real> | 
| 34 |  |  | class SVD | 
| 35 |  |  | { | 
| 36 |  |  |  | 
| 37 |  |  | DynamicRectMatrix<Real> U, V; | 
| 38 |  |  | DynamicVector<Real> s; | 
| 39 |  |  | int m, n; | 
| 40 |  |  |  | 
| 41 |  |  | public: | 
| 42 |  |  |  | 
| 43 |  |  |  | 
| 44 |  |  | SVD (const DynamicRectMatrix<Real> &Arg) { | 
| 45 |  |  | m = Arg.getNRow(); | 
| 46 |  |  | n = Arg.getNCol(); | 
| 47 |  |  | int nu = min(m,n); | 
| 48 |  |  | s = DynamicVector<Real>(min(m+1,n)); | 
| 49 |  |  | U = DynamicRectMatrix<Real>(m, nu, Real(0)); | 
| 50 |  |  | V = DynamicRectMatrix<Real>(n,n); | 
| 51 |  |  | DynamicVector<Real> e(n); | 
| 52 |  |  | DynamicVector<Real> work(m); | 
| 53 |  |  | DynamicRectMatrix<Real> A(Arg); | 
| 54 | cli2 | 1360 |  | 
| 55 |  |  | int wantu = 1;    /* boolean */ | 
| 56 |  |  | int wantv = 1;    /* boolean */ | 
| 57 | cli2 | 1349 | int i=0, j=0, k=0; | 
| 58 |  |  |  | 
| 59 |  |  | // Reduce A to bidiagonal form, storing the diagonal elements | 
| 60 |  |  | // in s and the super-diagonal elements in e. | 
| 61 |  |  |  | 
| 62 |  |  | int nct = min(m-1,n); | 
| 63 |  |  | int nrt = max(0,min(n-2,m)); | 
| 64 | cli2 | 1360 |  | 
| 65 | cli2 | 1349 | for (k = 0; k < max(nct,nrt); k++) { | 
| 66 |  |  | if (k < nct) { | 
| 67 |  |  |  | 
| 68 |  |  | // Compute the transformation for the k-th column and | 
| 69 |  |  | // place the k-th diagonal in s(k). | 
| 70 |  |  | // Compute 2-norm of k-th column without under/overflow. | 
| 71 |  |  | s(k) = 0; | 
| 72 |  |  | for (i = k; i < m; i++) { | 
| 73 |  |  | s(k) = hypot(s(k),A(i,k)); | 
| 74 |  |  | } | 
| 75 |  |  | if (s(k) != 0.0) { | 
| 76 |  |  | if (A(k,k) < 0.0) { | 
| 77 |  |  | s(k) = -s(k); | 
| 78 |  |  | } | 
| 79 |  |  | for (i = k; i < m; i++) { | 
| 80 |  |  | A(i,k) /= s(k); | 
| 81 |  |  | } | 
| 82 |  |  | A(k,k) += 1.0; | 
| 83 |  |  | } | 
| 84 |  |  | s(k) = -s(k); | 
| 85 |  |  | } | 
| 86 |  |  | for (j = k+1; j < n; j++) { | 
| 87 |  |  | if ((k < nct) && (s(k) != 0.0))  { | 
| 88 |  |  |  | 
| 89 |  |  | // Apply the transformation. | 
| 90 |  |  |  | 
| 91 |  |  | Real t(0.0); | 
| 92 |  |  | for (i = k; i < m; i++) { | 
| 93 |  |  | t += A(i,k)*A(i,j); | 
| 94 |  |  | } | 
| 95 |  |  | t = -t/A(k,k); | 
| 96 |  |  | for (i = k; i < m; i++) { | 
| 97 |  |  | A(i,j) += t*A(i,k); | 
| 98 |  |  | } | 
| 99 |  |  | } | 
| 100 |  |  |  | 
| 101 |  |  | // Place the k-th row of A into e for the | 
| 102 |  |  | // subsequent calculation of the row transformation. | 
| 103 |  |  |  | 
| 104 |  |  | e(j) = A(k,j); | 
| 105 |  |  | } | 
| 106 |  |  | if (wantu & (k < nct)) { | 
| 107 |  |  |  | 
| 108 |  |  | // Place the transformation in U for subsequent back | 
| 109 |  |  | // multiplication. | 
| 110 |  |  |  | 
| 111 |  |  | for (i = k; i < m; i++) { | 
| 112 |  |  | U(i,k) = A(i,k); | 
| 113 |  |  | } | 
| 114 |  |  | } | 
| 115 |  |  | if (k < nrt) { | 
| 116 |  |  |  | 
| 117 |  |  | // Compute the k-th row transformation and place the | 
| 118 |  |  | // k-th super-diagonal in e(k). | 
| 119 |  |  | // Compute 2-norm without under/overflow. | 
| 120 |  |  | e(k) = 0; | 
| 121 |  |  | for (i = k+1; i < n; i++) { | 
| 122 |  |  | e(k) = hypot(e(k),e(i)); | 
| 123 |  |  | } | 
| 124 |  |  | if (e(k) != 0.0) { | 
| 125 |  |  | if (e(k+1) < 0.0) { | 
| 126 |  |  | e(k) = -e(k); | 
| 127 |  |  | } | 
| 128 |  |  | for (i = k+1; i < n; i++) { | 
| 129 |  |  | e(i) /= e(k); | 
| 130 |  |  | } | 
| 131 |  |  | e(k+1) += 1.0; | 
| 132 |  |  | } | 
| 133 |  |  | e(k) = -e(k); | 
| 134 |  |  | if ((k+1 < m) & (e(k) != 0.0)) { | 
| 135 |  |  |  | 
| 136 |  |  | // Apply the transformation. | 
| 137 |  |  |  | 
| 138 |  |  | for (i = k+1; i < m; i++) { | 
| 139 |  |  | work(i) = 0.0; | 
| 140 |  |  | } | 
| 141 |  |  | for (j = k+1; j < n; j++) { | 
| 142 |  |  | for (i = k+1; i < m; i++) { | 
| 143 |  |  | work(i) += e(j)*A(i,j); | 
| 144 |  |  | } | 
| 145 |  |  | } | 
| 146 |  |  | for (j = k+1; j < n; j++) { | 
| 147 |  |  | Real t(-e(j)/e(k+1)); | 
| 148 |  |  | for (i = k+1; i < m; i++) { | 
| 149 |  |  | A(i,j) += t*work(i); | 
| 150 |  |  | } | 
| 151 |  |  | } | 
| 152 |  |  | } | 
| 153 |  |  | if (wantv) { | 
| 154 |  |  |  | 
| 155 |  |  | // Place the transformation in V for subsequent | 
| 156 |  |  | // back multiplication. | 
| 157 |  |  |  | 
| 158 |  |  | for (i = k+1; i < n; i++) { | 
| 159 |  |  | V(i,k) = e(i); | 
| 160 |  |  | } | 
| 161 |  |  | } | 
| 162 |  |  | } | 
| 163 |  |  | } | 
| 164 |  |  |  | 
| 165 |  |  | // Set up the final bidiagonal matrix or order p. | 
| 166 |  |  |  | 
| 167 |  |  | int p = min(n,m+1); | 
| 168 |  |  | if (nct < n) { | 
| 169 |  |  | s(nct) = A(nct,nct); | 
| 170 |  |  | } | 
| 171 |  |  | if (m < p) { | 
| 172 |  |  | s(p-1) = 0.0; | 
| 173 |  |  | } | 
| 174 |  |  | if (nrt+1 < p) { | 
| 175 |  |  | e(nrt) = A(nrt,p-1); | 
| 176 |  |  | } | 
| 177 |  |  | e(p-1) = 0.0; | 
| 178 |  |  |  | 
| 179 |  |  | // If required, generate U. | 
| 180 |  |  |  | 
| 181 |  |  | if (wantu) { | 
| 182 |  |  | for (j = nct; j < nu; j++) { | 
| 183 |  |  | for (i = 0; i < m; i++) { | 
| 184 |  |  | U(i,j) = 0.0; | 
| 185 |  |  | } | 
| 186 |  |  | U(j,j) = 1.0; | 
| 187 |  |  | } | 
| 188 |  |  | for (k = nct-1; k >= 0; k--) { | 
| 189 |  |  | if (s(k) != 0.0) { | 
| 190 |  |  | for (j = k+1; j < nu; j++) { | 
| 191 |  |  | Real t(0.0); | 
| 192 |  |  | for (i = k; i < m; i++) { | 
| 193 |  |  | t += U(i,k)*U(i,j); | 
| 194 |  |  | } | 
| 195 |  |  | t = -t/U(k,k); | 
| 196 |  |  | for (i = k; i < m; i++) { | 
| 197 |  |  | U(i,j) += t*U(i,k); | 
| 198 |  |  | } | 
| 199 |  |  | } | 
| 200 |  |  | for (i = k; i < m; i++ ) { | 
| 201 |  |  | U(i,k) = -U(i,k); | 
| 202 |  |  | } | 
| 203 |  |  | U(k,k) = 1.0 + U(k,k); | 
| 204 |  |  | for (i = 0; i < k-1; i++) { | 
| 205 |  |  | U(i,k) = 0.0; | 
| 206 |  |  | } | 
| 207 |  |  | } else { | 
| 208 |  |  | for (i = 0; i < m; i++) { | 
| 209 |  |  | U(i,k) = 0.0; | 
| 210 |  |  | } | 
| 211 |  |  | U(k,k) = 1.0; | 
| 212 |  |  | } | 
| 213 |  |  | } | 
| 214 |  |  | } | 
| 215 |  |  |  | 
| 216 |  |  | // If required, generate V. | 
| 217 |  |  |  | 
| 218 |  |  | if (wantv) { | 
| 219 |  |  | for (k = n-1; k >= 0; k--) { | 
| 220 |  |  | if ((k < nrt) & (e(k) != 0.0)) { | 
| 221 |  |  | for (j = k+1; j < nu; j++) { | 
| 222 |  |  | Real t(0.0); | 
| 223 |  |  | for (i = k+1; i < n; i++) { | 
| 224 |  |  | t += V(i,k)*V(i,j); | 
| 225 |  |  | } | 
| 226 |  |  | t = -t/V(k+1,k); | 
| 227 |  |  | for (i = k+1; i < n; i++) { | 
| 228 |  |  | V(i,j) += t*V(i,k); | 
| 229 |  |  | } | 
| 230 |  |  | } | 
| 231 |  |  | } | 
| 232 |  |  | for (i = 0; i < n; i++) { | 
| 233 |  |  | V(i,k) = 0.0; | 
| 234 |  |  | } | 
| 235 |  |  | V(k,k) = 1.0; | 
| 236 |  |  | } | 
| 237 |  |  | } | 
| 238 |  |  |  | 
| 239 |  |  | // Main iteration loop for the singular values. | 
| 240 |  |  |  | 
| 241 |  |  | int pp = p-1; | 
| 242 |  |  | int iter = 0; | 
| 243 |  |  | Real eps(pow(2.0,-52.0)); | 
| 244 |  |  | while (p > 0) { | 
| 245 |  |  | int k=0; | 
| 246 |  |  | int kase=0; | 
| 247 |  |  |  | 
| 248 |  |  | // Here is where a test for too many iterations would go. | 
| 249 |  |  |  | 
| 250 |  |  | // This section of the program inspects for | 
| 251 |  |  | // negligible elements in the s and e arrays.  On | 
| 252 |  |  | // completion the variables kase and k are set as follows. | 
| 253 |  |  |  | 
| 254 |  |  | // kase = 1     if s(p) and e(k-1) are negligible and k<p | 
| 255 |  |  | // kase = 2     if s(k) is negligible and k<p | 
| 256 |  |  | // kase = 3     if e(k-1) is negligible, k<p, and | 
| 257 |  |  | //              s(k), ..., s(p) are not negligible (qr step). | 
| 258 |  |  | // kase = 4     if e(p-1) is negligible (convergence). | 
| 259 |  |  |  | 
| 260 |  |  | for (k = p-2; k >= -1; k--) { | 
| 261 |  |  | if (k == -1) { | 
| 262 |  |  | break; | 
| 263 |  |  | } | 
| 264 |  |  | if (abs(e(k)) <= eps*(abs(s(k)) + abs(s(k+1)))) { | 
| 265 |  |  | e(k) = 0.0; | 
| 266 |  |  | break; | 
| 267 |  |  | } | 
| 268 |  |  | } | 
| 269 |  |  | if (k == p-2) { | 
| 270 |  |  | kase = 4; | 
| 271 |  |  | } else { | 
| 272 |  |  | int ks; | 
| 273 |  |  | for (ks = p-1; ks >= k; ks--) { | 
| 274 |  |  | if (ks == k) { | 
| 275 |  |  | break; | 
| 276 |  |  | } | 
| 277 |  |  | Real t( (ks != p ? abs(e(ks)) : 0.) + | 
| 278 |  |  | (ks != k+1 ? abs(e(ks-1)) : 0.)); | 
| 279 |  |  | if (abs(s(ks)) <= eps*t)  { | 
| 280 |  |  | s(ks) = 0.0; | 
| 281 |  |  | break; | 
| 282 |  |  | } | 
| 283 |  |  | } | 
| 284 |  |  | if (ks == k) { | 
| 285 |  |  | kase = 3; | 
| 286 |  |  | } else if (ks == p-1) { | 
| 287 |  |  | kase = 1; | 
| 288 |  |  | } else { | 
| 289 |  |  | kase = 2; | 
| 290 |  |  | k = ks; | 
| 291 |  |  | } | 
| 292 |  |  | } | 
| 293 |  |  | k++; | 
| 294 |  |  |  | 
| 295 |  |  | // Perform the task indicated by kase. | 
| 296 |  |  |  | 
| 297 |  |  | switch (kase) { | 
| 298 |  |  |  | 
| 299 |  |  | // Deflate negligible s(p). | 
| 300 |  |  |  | 
| 301 |  |  | case 1: { | 
| 302 |  |  | Real f(e(p-2)); | 
| 303 |  |  | e(p-2) = 0.0; | 
| 304 |  |  | for (j = p-2; j >= k; j--) { | 
| 305 |  |  | Real t( hypot(s(j),f)); | 
| 306 |  |  | Real cs(s(j)/t); | 
| 307 |  |  | Real sn(f/t); | 
| 308 |  |  | s(j) = t; | 
| 309 |  |  | if (j != k) { | 
| 310 |  |  | f = -sn*e(j-1); | 
| 311 |  |  | e(j-1) = cs*e(j-1); | 
| 312 |  |  | } | 
| 313 |  |  | if (wantv) { | 
| 314 |  |  | for (i = 0; i < n; i++) { | 
| 315 |  |  | t = cs*V(i,j) + sn*V(i,p-1); | 
| 316 |  |  | V(i,p-1) = -sn*V(i,j) + cs*V(i,p-1); | 
| 317 |  |  | V(i,j) = t; | 
| 318 |  |  | } | 
| 319 |  |  | } | 
| 320 |  |  | } | 
| 321 |  |  | } | 
| 322 |  |  | break; | 
| 323 |  |  |  | 
| 324 |  |  | // Split at negligible s(k). | 
| 325 |  |  |  | 
| 326 |  |  | case 2: { | 
| 327 |  |  | Real f(e(k-1)); | 
| 328 |  |  | e(k-1) = 0.0; | 
| 329 |  |  | for (j = k; j < p; j++) { | 
| 330 |  |  | Real t(hypot(s(j),f)); | 
| 331 |  |  | Real cs( s(j)/t); | 
| 332 |  |  | Real sn(f/t); | 
| 333 |  |  | s(j) = t; | 
| 334 |  |  | f = -sn*e(j); | 
| 335 |  |  | e(j) = cs*e(j); | 
| 336 |  |  | if (wantu) { | 
| 337 |  |  | for (i = 0; i < m; i++) { | 
| 338 |  |  | t = cs*U(i,j) + sn*U(i,k-1); | 
| 339 |  |  | U(i,k-1) = -sn*U(i,j) + cs*U(i,k-1); | 
| 340 |  |  | U(i,j) = t; | 
| 341 |  |  | } | 
| 342 |  |  | } | 
| 343 |  |  | } | 
| 344 |  |  | } | 
| 345 |  |  | break; | 
| 346 |  |  |  | 
| 347 |  |  | // Perform one qr step. | 
| 348 |  |  |  | 
| 349 |  |  | case 3: { | 
| 350 |  |  |  | 
| 351 |  |  | // Calculate the shift. | 
| 352 |  |  |  | 
| 353 |  |  | Real scale = max(max(max(max( | 
| 354 |  |  | abs(s(p-1)),abs(s(p-2))),abs(e(p-2))), | 
| 355 |  |  | abs(s(k))),abs(e(k))); | 
| 356 |  |  | Real sp = s(p-1)/scale; | 
| 357 |  |  | Real spm1 = s(p-2)/scale; | 
| 358 |  |  | Real epm1 = e(p-2)/scale; | 
| 359 |  |  | Real sk = s(k)/scale; | 
| 360 |  |  | Real ek = e(k)/scale; | 
| 361 |  |  | Real b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0; | 
| 362 |  |  | Real c = (sp*epm1)*(sp*epm1); | 
| 363 |  |  | Real shift = 0.0; | 
| 364 |  |  | if ((b != 0.0) || (c != 0.0)) { | 
| 365 |  |  | shift = sqrt(b*b + c); | 
| 366 |  |  | if (b < 0.0) { | 
| 367 |  |  | shift = -shift; | 
| 368 |  |  | } | 
| 369 |  |  | shift = c/(b + shift); | 
| 370 |  |  | } | 
| 371 |  |  | Real f = (sk + sp)*(sk - sp) + shift; | 
| 372 |  |  | Real g = sk*ek; | 
| 373 |  |  |  | 
| 374 |  |  | // Chase zeros. | 
| 375 |  |  |  | 
| 376 |  |  | for (j = k; j < p-1; j++) { | 
| 377 |  |  | Real t = hypot(f,g); | 
| 378 |  |  | Real cs = f/t; | 
| 379 |  |  | Real sn = g/t; | 
| 380 |  |  | if (j != k) { | 
| 381 |  |  | e(j-1) = t; | 
| 382 |  |  | } | 
| 383 |  |  | f = cs*s(j) + sn*e(j); | 
| 384 |  |  | e(j) = cs*e(j) - sn*s(j); | 
| 385 |  |  | g = sn*s(j+1); | 
| 386 |  |  | s(j+1) = cs*s(j+1); | 
| 387 |  |  | if (wantv) { | 
| 388 |  |  | for (i = 0; i < n; i++) { | 
| 389 |  |  | t = cs*V(i,j) + sn*V(i,j+1); | 
| 390 |  |  | V(i,j+1) = -sn*V(i,j) + cs*V(i,j+1); | 
| 391 |  |  | V(i,j) = t; | 
| 392 |  |  | } | 
| 393 |  |  | } | 
| 394 |  |  | t = hypot(f,g); | 
| 395 |  |  | cs = f/t; | 
| 396 |  |  | sn = g/t; | 
| 397 |  |  | s(j) = t; | 
| 398 |  |  | f = cs*e(j) + sn*s(j+1); | 
| 399 |  |  | s(j+1) = -sn*e(j) + cs*s(j+1); | 
| 400 |  |  | g = sn*e(j+1); | 
| 401 |  |  | e(j+1) = cs*e(j+1); | 
| 402 |  |  | if (wantu && (j < m-1)) { | 
| 403 |  |  | for (i = 0; i < m; i++) { | 
| 404 |  |  | t = cs*U(i,j) + sn*U(i,j+1); | 
| 405 |  |  | U(i,j+1) = -sn*U(i,j) + cs*U(i,j+1); | 
| 406 |  |  | U(i,j) = t; | 
| 407 |  |  | } | 
| 408 |  |  | } | 
| 409 |  |  | } | 
| 410 |  |  | e(p-2) = f; | 
| 411 |  |  | iter = iter + 1; | 
| 412 |  |  | } | 
| 413 |  |  | break; | 
| 414 |  |  |  | 
| 415 |  |  | // Convergence. | 
| 416 |  |  |  | 
| 417 |  |  | case 4: { | 
| 418 |  |  |  | 
| 419 |  |  | // Make the singular values positive. | 
| 420 |  |  |  | 
| 421 |  |  | if (s(k) <= 0.0) { | 
| 422 |  |  | s(k) = (s(k) < 0.0 ? -s(k) : 0.0); | 
| 423 |  |  | if (wantv) { | 
| 424 |  |  | for (i = 0; i <= pp; i++) { | 
| 425 |  |  | V(i,k) = -V(i,k); | 
| 426 |  |  | } | 
| 427 |  |  | } | 
| 428 |  |  | } | 
| 429 |  |  |  | 
| 430 |  |  | // Order the singular values. | 
| 431 |  |  |  | 
| 432 |  |  | while (k < pp) { | 
| 433 |  |  | if (s(k) >= s(k+1)) { | 
| 434 |  |  | break; | 
| 435 |  |  | } | 
| 436 |  |  | Real t = s(k); | 
| 437 |  |  | s(k) = s(k+1); | 
| 438 |  |  | s(k+1) = t; | 
| 439 |  |  | if (wantv && (k < n-1)) { | 
| 440 |  |  | for (i = 0; i < n; i++) { | 
| 441 |  |  | t = V(i,k+1); V(i,k+1) = V(i,k); V(i,k) = t; | 
| 442 |  |  | } | 
| 443 |  |  | } | 
| 444 |  |  | if (wantu && (k < m-1)) { | 
| 445 |  |  | for (i = 0; i < m; i++) { | 
| 446 |  |  | t = U(i,k+1); U(i,k+1) = U(i,k); U(i,k) = t; | 
| 447 |  |  | } | 
| 448 |  |  | } | 
| 449 |  |  | k++; | 
| 450 |  |  | } | 
| 451 |  |  | iter = 0; | 
| 452 |  |  | p--; | 
| 453 |  |  | } | 
| 454 |  |  | break; | 
| 455 |  |  | } | 
| 456 |  |  | } | 
| 457 |  |  | } | 
| 458 |  |  |  | 
| 459 |  |  |  | 
| 460 |  |  | void getU (DynamicRectMatrix<Real> &A) { | 
| 461 |  |  |  | 
| 462 |  |  | int minm = min(m+1,n); | 
| 463 |  |  |  | 
| 464 |  |  | A = DynamicRectMatrix<Real>(m, minm); | 
| 465 |  |  |  | 
| 466 |  |  | for (int i=0; i<m; i++) | 
| 467 |  |  | for (int j=0; j<minm; j++) | 
| 468 |  |  | A(i,j) = U(i,j); | 
| 469 |  |  | } | 
| 470 |  |  |  | 
| 471 |  |  | /* Return the right singular vectors */ | 
| 472 |  |  | void getV (DynamicRectMatrix<Real> &A) { | 
| 473 |  |  | A = V; | 
| 474 |  |  | } | 
| 475 |  |  |  | 
| 476 |  |  | /** Return the one-dimensional array of singular values */ | 
| 477 |  |  | void getSingularValues (DynamicVector<Real> &x) { | 
| 478 |  |  | x = s; | 
| 479 |  |  | } | 
| 480 |  |  |  | 
| 481 |  |  | /** Return the diagonal matrix of singular values | 
| 482 |  |  | @return     S | 
| 483 |  |  | */ | 
| 484 |  |  | void getS (DynamicRectMatrix<Real> &A) { | 
| 485 |  |  | A = DynamicRectMatrix<Real>(n,n); | 
| 486 |  |  | for (int i = 0; i < n; i++) { | 
| 487 |  |  | for (int j = 0; j < n; j++) { | 
| 488 |  |  | A(i,j) = 0.0; | 
| 489 |  |  | } | 
| 490 |  |  | A(i,i) = s(i); | 
| 491 |  |  | } | 
| 492 |  |  | } | 
| 493 |  |  |  | 
| 494 |  |  | /** Two norm  (max(S)) */ | 
| 495 |  |  | Real norm2 () { | 
| 496 |  |  | return s(0); | 
| 497 |  |  | } | 
| 498 |  |  |  | 
| 499 |  |  | /** Two norm of condition number (max(S)/min(S)) */ | 
| 500 |  |  | Real cond () { | 
| 501 |  |  | return s(0)/s(min(m,n)-1); | 
| 502 |  |  | } | 
| 503 |  |  |  | 
| 504 |  |  | /** Effective numerical matrix rank | 
| 505 |  |  | @return     Number of nonnegligible singular values. | 
| 506 |  |  | */ | 
| 507 |  |  | int rank () { | 
| 508 |  |  | Real eps = pow(2.0,-52.0); | 
| 509 |  |  | Real tol = max(m,n)*s(0)*eps; | 
| 510 |  |  | int r = 0; | 
| 511 |  |  | for (int i = 0; i < s.dim(); i++) { | 
| 512 |  |  | if (s(i) > tol) { | 
| 513 |  |  | r++; | 
| 514 |  |  | } | 
| 515 |  |  | } | 
| 516 |  |  | return r; | 
| 517 |  |  | } | 
| 518 |  |  | }; | 
| 519 |  |  | } | 
| 520 |  |  | #endif | 
| 521 |  |  | // JAMA_SVD_H |