| 1 | #ifndef JAMA_SVD_H | 
| 2 | #define JAMA_SVD_H | 
| 3 |  | 
| 4 | #include "math/DynamicRectMatrix.hpp" | 
| 5 |  | 
| 6 | #include <algorithm> | 
| 7 | // for min(), max() below | 
| 8 | #include <cmath> | 
| 9 | // for abs() below | 
| 10 |  | 
| 11 | using namespace oopse; | 
| 12 | using namespace std; | 
| 13 |  | 
| 14 | namespace JAMA | 
| 15 | { | 
| 16 | /** Singular Value Decomposition. | 
| 17 | <P> | 
| 18 | For an m-by-n matrix A with m >= n, the singular value decomposition is | 
| 19 | an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and | 
| 20 | an n-by-n orthogonal matrix V so that A = U*S*V'. | 
| 21 | <P> | 
| 22 | The singular values, sigma(k) = S(k,k), are ordered so that | 
| 23 | sigma(0) >= sigma(1) >= ... >= sigma(n-1). | 
| 24 | <P> | 
| 25 | The singular value decompostion always exists, so the constructor will | 
| 26 | never fail.  The matrix condition number and the effective numerical | 
| 27 | rank can be computed from this decomposition. | 
| 28 |  | 
| 29 | <p> | 
| 30 | (Adapted from JAMA, a Java Matrix Library, developed by jointly | 
| 31 | by the Mathworks and NIST; see  http://math.nist.gov/javanumerics/jama). | 
| 32 | */ | 
| 33 | template <class Real> | 
| 34 | class SVD | 
| 35 | { | 
| 36 |  | 
| 37 | DynamicRectMatrix<Real> U, V; | 
| 38 | DynamicVector<Real> s; | 
| 39 | int m, n; | 
| 40 |  | 
| 41 | public: | 
| 42 |  | 
| 43 |  | 
| 44 | SVD (const DynamicRectMatrix<Real> &Arg) { | 
| 45 |  | 
| 46 | m = Arg.getNRow(); | 
| 47 | n = Arg.getNCol(); | 
| 48 | int nu = min(m,n); | 
| 49 | s = DynamicVector<Real>(min(m+1,n)); | 
| 50 | U = DynamicRectMatrix<Real>(m, nu, Real(0)); | 
| 51 | V = DynamicRectMatrix<Real>(n,n); | 
| 52 | DynamicVector<Real> e(n); | 
| 53 | DynamicVector<Real> work(m); | 
| 54 | DynamicRectMatrix<Real> A(Arg); | 
| 55 | int wantu = 1;                                    /* boolean */ | 
| 56 | int wantv = 1;                                    /* boolean */ | 
| 57 | int i=0, j=0, k=0; | 
| 58 |  | 
| 59 | // Reduce A to bidiagonal form, storing the diagonal elements | 
| 60 | // in s and the super-diagonal elements in e. | 
| 61 |  | 
| 62 | int nct = min(m-1,n); | 
| 63 | int nrt = max(0,min(n-2,m)); | 
| 64 | for (k = 0; k < max(nct,nrt); k++) { | 
| 65 | if (k < nct) { | 
| 66 |  | 
| 67 | // Compute the transformation for the k-th column and | 
| 68 | // place the k-th diagonal in s(k). | 
| 69 | // Compute 2-norm of k-th column without under/overflow. | 
| 70 | s(k) = 0; | 
| 71 | for (i = k; i < m; i++) { | 
| 72 | s(k) = hypot(s(k),A(i,k)); | 
| 73 | } | 
| 74 | if (s(k) != 0.0) { | 
| 75 | if (A(k,k) < 0.0) { | 
| 76 | s(k) = -s(k); | 
| 77 | } | 
| 78 | for (i = k; i < m; i++) { | 
| 79 | A(i,k) /= s(k); | 
| 80 | } | 
| 81 | A(k,k) += 1.0; | 
| 82 | } | 
| 83 | s(k) = -s(k); | 
| 84 | } | 
| 85 | for (j = k+1; j < n; j++) { | 
| 86 | if ((k < nct) && (s(k) != 0.0))  { | 
| 87 |  | 
| 88 | // Apply the transformation. | 
| 89 |  | 
| 90 | Real t(0.0); | 
| 91 | for (i = k; i < m; i++) { | 
| 92 | t += A(i,k)*A(i,j); | 
| 93 | } | 
| 94 | t = -t/A(k,k); | 
| 95 | for (i = k; i < m; i++) { | 
| 96 | A(i,j) += t*A(i,k); | 
| 97 | } | 
| 98 | } | 
| 99 |  | 
| 100 | // Place the k-th row of A into e for the | 
| 101 | // subsequent calculation of the row transformation. | 
| 102 |  | 
| 103 | e(j) = A(k,j); | 
| 104 | } | 
| 105 | if (wantu & (k < nct)) { | 
| 106 |  | 
| 107 | // Place the transformation in U for subsequent back | 
| 108 | // multiplication. | 
| 109 |  | 
| 110 | for (i = k; i < m; i++) { | 
| 111 | U(i,k) = A(i,k); | 
| 112 | } | 
| 113 | } | 
| 114 | if (k < nrt) { | 
| 115 |  | 
| 116 | // Compute the k-th row transformation and place the | 
| 117 | // k-th super-diagonal in e(k). | 
| 118 | // Compute 2-norm without under/overflow. | 
| 119 | e(k) = 0; | 
| 120 | for (i = k+1; i < n; i++) { | 
| 121 | e(k) = hypot(e(k),e(i)); | 
| 122 | } | 
| 123 | if (e(k) != 0.0) { | 
| 124 | if (e(k+1) < 0.0) { | 
| 125 | e(k) = -e(k); | 
| 126 | } | 
| 127 | for (i = k+1; i < n; i++) { | 
| 128 | e(i) /= e(k); | 
| 129 | } | 
| 130 | e(k+1) += 1.0; | 
| 131 | } | 
| 132 | e(k) = -e(k); | 
| 133 | if ((k+1 < m) & (e(k) != 0.0)) { | 
| 134 |  | 
| 135 | // Apply the transformation. | 
| 136 |  | 
| 137 | for (i = k+1; i < m; i++) { | 
| 138 | work(i) = 0.0; | 
| 139 | } | 
| 140 | for (j = k+1; j < n; j++) { | 
| 141 | for (i = k+1; i < m; i++) { | 
| 142 | work(i) += e(j)*A(i,j); | 
| 143 | } | 
| 144 | } | 
| 145 | for (j = k+1; j < n; j++) { | 
| 146 | Real t(-e(j)/e(k+1)); | 
| 147 | for (i = k+1; i < m; i++) { | 
| 148 | A(i,j) += t*work(i); | 
| 149 | } | 
| 150 | } | 
| 151 | } | 
| 152 | if (wantv) { | 
| 153 |  | 
| 154 | // Place the transformation in V for subsequent | 
| 155 | // back multiplication. | 
| 156 |  | 
| 157 | for (i = k+1; i < n; i++) { | 
| 158 | V(i,k) = e(i); | 
| 159 | } | 
| 160 | } | 
| 161 | } | 
| 162 | } | 
| 163 |  | 
| 164 | // Set up the final bidiagonal matrix or order p. | 
| 165 |  | 
| 166 | int p = min(n,m+1); | 
| 167 | if (nct < n) { | 
| 168 | s(nct) = A(nct,nct); | 
| 169 | } | 
| 170 | if (m < p) { | 
| 171 | s(p-1) = 0.0; | 
| 172 | } | 
| 173 | if (nrt+1 < p) { | 
| 174 | e(nrt) = A(nrt,p-1); | 
| 175 | } | 
| 176 | e(p-1) = 0.0; | 
| 177 |  | 
| 178 | // If required, generate U. | 
| 179 |  | 
| 180 | if (wantu) { | 
| 181 | for (j = nct; j < nu; j++) { | 
| 182 | for (i = 0; i < m; i++) { | 
| 183 | U(i,j) = 0.0; | 
| 184 | } | 
| 185 | U(j,j) = 1.0; | 
| 186 | } | 
| 187 | for (k = nct-1; k >= 0; k--) { | 
| 188 | if (s(k) != 0.0) { | 
| 189 | for (j = k+1; j < nu; j++) { | 
| 190 | Real t(0.0); | 
| 191 | for (i = k; i < m; i++) { | 
| 192 | t += U(i,k)*U(i,j); | 
| 193 | } | 
| 194 | t = -t/U(k,k); | 
| 195 | for (i = k; i < m; i++) { | 
| 196 | U(i,j) += t*U(i,k); | 
| 197 | } | 
| 198 | } | 
| 199 | for (i = k; i < m; i++ ) { | 
| 200 | U(i,k) = -U(i,k); | 
| 201 | } | 
| 202 | U(k,k) = 1.0 + U(k,k); | 
| 203 | for (i = 0; i < k-1; i++) { | 
| 204 | U(i,k) = 0.0; | 
| 205 | } | 
| 206 | } else { | 
| 207 | for (i = 0; i < m; i++) { | 
| 208 | U(i,k) = 0.0; | 
| 209 | } | 
| 210 | U(k,k) = 1.0; | 
| 211 | } | 
| 212 | } | 
| 213 | } | 
| 214 |  | 
| 215 | // If required, generate V. | 
| 216 |  | 
| 217 | if (wantv) { | 
| 218 | for (k = n-1; k >= 0; k--) { | 
| 219 | if ((k < nrt) & (e(k) != 0.0)) { | 
| 220 | for (j = k+1; j < nu; j++) { | 
| 221 | Real t(0.0); | 
| 222 | for (i = k+1; i < n; i++) { | 
| 223 | t += V(i,k)*V(i,j); | 
| 224 | } | 
| 225 | t = -t/V(k+1,k); | 
| 226 | for (i = k+1; i < n; i++) { | 
| 227 | V(i,j) += t*V(i,k); | 
| 228 | } | 
| 229 | } | 
| 230 | } | 
| 231 | for (i = 0; i < n; i++) { | 
| 232 | V(i,k) = 0.0; | 
| 233 | } | 
| 234 | V(k,k) = 1.0; | 
| 235 | } | 
| 236 | } | 
| 237 |  | 
| 238 | // Main iteration loop for the singular values. | 
| 239 |  | 
| 240 | int pp = p-1; | 
| 241 | int iter = 0; | 
| 242 | Real eps(pow(2.0,-52.0)); | 
| 243 | while (p > 0) { | 
| 244 | int k=0; | 
| 245 | int kase=0; | 
| 246 |  | 
| 247 | // Here is where a test for too many iterations would go. | 
| 248 |  | 
| 249 | // This section of the program inspects for | 
| 250 | // negligible elements in the s and e arrays.  On | 
| 251 | // completion the variables kase and k are set as follows. | 
| 252 |  | 
| 253 | // kase = 1     if s(p) and e(k-1) are negligible and k<p | 
| 254 | // kase = 2     if s(k) is negligible and k<p | 
| 255 | // kase = 3     if e(k-1) is negligible, k<p, and | 
| 256 | //              s(k), ..., s(p) are not negligible (qr step). | 
| 257 | // kase = 4     if e(p-1) is negligible (convergence). | 
| 258 |  | 
| 259 | for (k = p-2; k >= -1; k--) { | 
| 260 | if (k == -1) { | 
| 261 | break; | 
| 262 | } | 
| 263 | if (abs(e(k)) <= eps*(abs(s(k)) + abs(s(k+1)))) { | 
| 264 | e(k) = 0.0; | 
| 265 | break; | 
| 266 | } | 
| 267 | } | 
| 268 | if (k == p-2) { | 
| 269 | kase = 4; | 
| 270 | } else { | 
| 271 | int ks; | 
| 272 | for (ks = p-1; ks >= k; ks--) { | 
| 273 | if (ks == k) { | 
| 274 | break; | 
| 275 | } | 
| 276 | Real t( (ks != p ? abs(e(ks)) : 0.) + | 
| 277 | (ks != k+1 ? abs(e(ks-1)) : 0.)); | 
| 278 | if (abs(s(ks)) <= eps*t)  { | 
| 279 | s(ks) = 0.0; | 
| 280 | break; | 
| 281 | } | 
| 282 | } | 
| 283 | if (ks == k) { | 
| 284 | kase = 3; | 
| 285 | } else if (ks == p-1) { | 
| 286 | kase = 1; | 
| 287 | } else { | 
| 288 | kase = 2; | 
| 289 | k = ks; | 
| 290 | } | 
| 291 | } | 
| 292 | k++; | 
| 293 |  | 
| 294 | // Perform the task indicated by kase. | 
| 295 |  | 
| 296 | switch (kase) { | 
| 297 |  | 
| 298 | // Deflate negligible s(p). | 
| 299 |  | 
| 300 | case 1: { | 
| 301 | Real f(e(p-2)); | 
| 302 | e(p-2) = 0.0; | 
| 303 | for (j = p-2; j >= k; j--) { | 
| 304 | Real t( hypot(s(j),f)); | 
| 305 | Real cs(s(j)/t); | 
| 306 | Real sn(f/t); | 
| 307 | s(j) = t; | 
| 308 | if (j != k) { | 
| 309 | f = -sn*e(j-1); | 
| 310 | e(j-1) = cs*e(j-1); | 
| 311 | } | 
| 312 | if (wantv) { | 
| 313 | for (i = 0; i < n; i++) { | 
| 314 | t = cs*V(i,j) + sn*V(i,p-1); | 
| 315 | V(i,p-1) = -sn*V(i,j) + cs*V(i,p-1); | 
| 316 | V(i,j) = t; | 
| 317 | } | 
| 318 | } | 
| 319 | } | 
| 320 | } | 
| 321 | break; | 
| 322 |  | 
| 323 | // Split at negligible s(k). | 
| 324 |  | 
| 325 | case 2: { | 
| 326 | Real f(e(k-1)); | 
| 327 | e(k-1) = 0.0; | 
| 328 | for (j = k; j < p; j++) { | 
| 329 | Real t(hypot(s(j),f)); | 
| 330 | Real cs( s(j)/t); | 
| 331 | Real sn(f/t); | 
| 332 | s(j) = t; | 
| 333 | f = -sn*e(j); | 
| 334 | e(j) = cs*e(j); | 
| 335 | if (wantu) { | 
| 336 | for (i = 0; i < m; i++) { | 
| 337 | t = cs*U(i,j) + sn*U(i,k-1); | 
| 338 | U(i,k-1) = -sn*U(i,j) + cs*U(i,k-1); | 
| 339 | U(i,j) = t; | 
| 340 | } | 
| 341 | } | 
| 342 | } | 
| 343 | } | 
| 344 | break; | 
| 345 |  | 
| 346 | // Perform one qr step. | 
| 347 |  | 
| 348 | case 3: { | 
| 349 |  | 
| 350 | // Calculate the shift. | 
| 351 |  | 
| 352 | Real scale = max(max(max(max( | 
| 353 | abs(s(p-1)),abs(s(p-2))),abs(e(p-2))), | 
| 354 | abs(s(k))),abs(e(k))); | 
| 355 | Real sp = s(p-1)/scale; | 
| 356 | Real spm1 = s(p-2)/scale; | 
| 357 | Real epm1 = e(p-2)/scale; | 
| 358 | Real sk = s(k)/scale; | 
| 359 | Real ek = e(k)/scale; | 
| 360 | Real b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0; | 
| 361 | Real c = (sp*epm1)*(sp*epm1); | 
| 362 | Real shift = 0.0; | 
| 363 | if ((b != 0.0) || (c != 0.0)) { | 
| 364 | shift = sqrt(b*b + c); | 
| 365 | if (b < 0.0) { | 
| 366 | shift = -shift; | 
| 367 | } | 
| 368 | shift = c/(b + shift); | 
| 369 | } | 
| 370 | Real f = (sk + sp)*(sk - sp) + shift; | 
| 371 | Real g = sk*ek; | 
| 372 |  | 
| 373 | // Chase zeros. | 
| 374 |  | 
| 375 | for (j = k; j < p-1; j++) { | 
| 376 | Real t = hypot(f,g); | 
| 377 | Real cs = f/t; | 
| 378 | Real sn = g/t; | 
| 379 | if (j != k) { | 
| 380 | e(j-1) = t; | 
| 381 | } | 
| 382 | f = cs*s(j) + sn*e(j); | 
| 383 | e(j) = cs*e(j) - sn*s(j); | 
| 384 | g = sn*s(j+1); | 
| 385 | s(j+1) = cs*s(j+1); | 
| 386 | if (wantv) { | 
| 387 | for (i = 0; i < n; i++) { | 
| 388 | t = cs*V(i,j) + sn*V(i,j+1); | 
| 389 | V(i,j+1) = -sn*V(i,j) + cs*V(i,j+1); | 
| 390 | V(i,j) = t; | 
| 391 | } | 
| 392 | } | 
| 393 | t = hypot(f,g); | 
| 394 | cs = f/t; | 
| 395 | sn = g/t; | 
| 396 | s(j) = t; | 
| 397 | f = cs*e(j) + sn*s(j+1); | 
| 398 | s(j+1) = -sn*e(j) + cs*s(j+1); | 
| 399 | g = sn*e(j+1); | 
| 400 | e(j+1) = cs*e(j+1); | 
| 401 | if (wantu && (j < m-1)) { | 
| 402 | for (i = 0; i < m; i++) { | 
| 403 | t = cs*U(i,j) + sn*U(i,j+1); | 
| 404 | U(i,j+1) = -sn*U(i,j) + cs*U(i,j+1); | 
| 405 | U(i,j) = t; | 
| 406 | } | 
| 407 | } | 
| 408 | } | 
| 409 | e(p-2) = f; | 
| 410 | iter = iter + 1; | 
| 411 | } | 
| 412 | break; | 
| 413 |  | 
| 414 | // Convergence. | 
| 415 |  | 
| 416 | case 4: { | 
| 417 |  | 
| 418 | // Make the singular values positive. | 
| 419 |  | 
| 420 | if (s(k) <= 0.0) { | 
| 421 | s(k) = (s(k) < 0.0 ? -s(k) : 0.0); | 
| 422 | if (wantv) { | 
| 423 | for (i = 0; i <= pp; i++) { | 
| 424 | V(i,k) = -V(i,k); | 
| 425 | } | 
| 426 | } | 
| 427 | } | 
| 428 |  | 
| 429 | // Order the singular values. | 
| 430 |  | 
| 431 | while (k < pp) { | 
| 432 | if (s(k) >= s(k+1)) { | 
| 433 | break; | 
| 434 | } | 
| 435 | Real t = s(k); | 
| 436 | s(k) = s(k+1); | 
| 437 | s(k+1) = t; | 
| 438 | if (wantv && (k < n-1)) { | 
| 439 | for (i = 0; i < n; i++) { | 
| 440 | t = V(i,k+1); V(i,k+1) = V(i,k); V(i,k) = t; | 
| 441 | } | 
| 442 | } | 
| 443 | if (wantu && (k < m-1)) { | 
| 444 | for (i = 0; i < m; i++) { | 
| 445 | t = U(i,k+1); U(i,k+1) = U(i,k); U(i,k) = t; | 
| 446 | } | 
| 447 | } | 
| 448 | k++; | 
| 449 | } | 
| 450 | iter = 0; | 
| 451 | p--; | 
| 452 | } | 
| 453 | break; | 
| 454 | } | 
| 455 | } | 
| 456 | } | 
| 457 |  | 
| 458 |  | 
| 459 | void getU (DynamicRectMatrix<Real> &A) { | 
| 460 |  | 
| 461 | int minm = min(m+1,n); | 
| 462 |  | 
| 463 | A = DynamicRectMatrix<Real>(m, minm); | 
| 464 |  | 
| 465 | for (int i=0; i<m; i++) | 
| 466 | for (int j=0; j<minm; j++) | 
| 467 | A(i,j) = U(i,j); | 
| 468 | } | 
| 469 |  | 
| 470 | /* Return the right singular vectors */ | 
| 471 | void getV (DynamicRectMatrix<Real> &A) { | 
| 472 | A = V; | 
| 473 | } | 
| 474 |  | 
| 475 | /** Return the one-dimensional array of singular values */ | 
| 476 | void getSingularValues (DynamicVector<Real> &x) { | 
| 477 | x = s; | 
| 478 | } | 
| 479 |  | 
| 480 | /** Return the diagonal matrix of singular values | 
| 481 | @return     S | 
| 482 | */ | 
| 483 | void getS (DynamicRectMatrix<Real> &A) { | 
| 484 | A = DynamicRectMatrix<Real>(n,n); | 
| 485 | for (int i = 0; i < n; i++) { | 
| 486 | for (int j = 0; j < n; j++) { | 
| 487 | A(i,j) = 0.0; | 
| 488 | } | 
| 489 | A(i,i) = s(i); | 
| 490 | } | 
| 491 | } | 
| 492 |  | 
| 493 | /** Two norm  (max(S)) */ | 
| 494 | Real norm2 () { | 
| 495 | return s(0); | 
| 496 | } | 
| 497 |  | 
| 498 | /** Two norm of condition number (max(S)/min(S)) */ | 
| 499 | Real cond () { | 
| 500 | return s(0)/s(min(m,n)-1); | 
| 501 | } | 
| 502 |  | 
| 503 | /** Effective numerical matrix rank | 
| 504 | @return     Number of nonnegligible singular values. | 
| 505 | */ | 
| 506 | int rank () { | 
| 507 | Real eps = pow(2.0,-52.0); | 
| 508 | Real tol = max(m,n)*s(0)*eps; | 
| 509 | int r = 0; | 
| 510 | for (int i = 0; i < s.dim(); i++) { | 
| 511 | if (s(i) > tol) { | 
| 512 | r++; | 
| 513 | } | 
| 514 | } | 
| 515 | return r; | 
| 516 | } | 
| 517 | }; | 
| 518 | } | 
| 519 | #endif | 
| 520 | // JAMA_SVD_H |